Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous sensors monitor the condition of railway freight cars

10.09.2012
Enhanced Safety for Rail Transport: When it comes to sustainable mobility, rail transport scores high, providing low-emission operation and low land use.

Nevertheless, its market share has been going down continuously compared to road transport. Progress might be made with regard to overcoming this shortfall, if it were possible to monitor freight cars in operation.


Energy-autonomous sensor nodes undergoing field test. Photo: Fraunhofer LBF


Early detection of damage and prevention of accidents: Energyautonomous sensor nodes enable ongoing monitoring of the condition of safety-relevant components in railway traffic. Photo: Fraunhofer LBF

This would enable an early detection of imminent damage and at the same time provide for condition-based maintenance. Freight traffic would become economically more efficient and significantly safer.

Researchers at the Fraunhofer Institute for Structural Durability and System Reliability have now developed a new solution for continuous condition monitoring of railway freight cars, based on intelligent, energy-autonomous sensors, enabling damage to be detected at an early stage and accidents to be avoided.The system can be flexibly configured, and even retrofitted into existing equipment. Fraunhofer LBF will be showcasing the new solution at the Innotrans exhibition at its Booth No. 225 in Hall 4.1.

Given the harsh operating conditions with severe loads re-sulting from vibrations, temperature variations, dirt and humidity, railway equipment needs to be simple and robust. Freight cars therefore generally do not have any onboard sensors or power supply. Hence the Darmstadt researchers created a method for the development of intelligent, energy-autonomous sensor nodes for structural monitoring.

The purpose of such nodes is to analyze and transmit data, using a limited amount of energy. In the course of the development, the research team employed advanced simulation and real-time simulation tools along with Hardware-in-the-Loop methods to efficiently advance development from the first draft to the first prototype through systematic testing.

The development team at Fraunhofer LBF designed an energy harvesting system capable of converting energy present in the ambient environment in order to supply the sensor node, the energy source "tapped into" being the mechanical vibrations of the railway wagons. As ambient energy is not continuously available, the research team developed an energy management system adapted to the requirements of the application on hand, which enables the reliable acquisition, processing and wireless transmission of measurement data.

A special challenge presented itself in connection with the need for reliable transmission of the data to the driver, which resulted from the fact that there are numerous sources of interference along the transmission path. The researchers implemented the condition monitoring system using a hot box detector for monitoring of wheel bearings.

Availability of energy at the place of application

The key element of the energy-autonomous sensor system is the condition monitoring software. Several algorithms are available, which provide information regarding the proper functioning of a system or calculate its residual life.

Considering the limited amount of ambient energy avail-able onboard the freight car, an integrated approach had to be taken in the design of the energy-autonomous sensor system (EASS). At the outset of the methodical development process, the developers conducted an extensive measurement to determine the system dynamics and the service loads present on the freight car. Based on the measurement data obtained, they were able to determine an application site, at which sufficient energy to operate an EASS can be harvested. The Fraunhofer LBF researchers then designed a mechanical resonator optimized for this site, with applied piezoelectric transducers to convert mechanical vibrations present in the ambient environment with high efficiency into electrical energy.

Hardware and software for energy management and for data processing and transmission are complex systems, whose interaction was initially analyzed and optimized by the Darmstadt research team in the laboratory by means of Hardware-in-the-Loop simulations. This enabled the mechatronic systems to be assessed under realistic conditions, realistic ambient condition to be reproduced and prototype electronic devices to be evaluated. Hence, at the beginning of the development process, many of the EASS components were represented by real-time computer models and individual hardware components numerically optimized. Following successful adaptation, the system components were gradually replaced by prototypes, until a well-coordinated energy-autonomous sensor system was achieved. Upon successful implementation in the laboratory, the system was evaluated in a field test.

Improving products through "Usage Monitoring"

The new sensor nodes may help the railway industry to improve its competitiveness against other forms of transport. Condition-based monitoring of safety relevant components, made possible by the sensor node, will reduce cost compared to conventional interval-based maintenance. At the same time, the new solution maintains the capability to arbitrarily assemble train sets. Continuous data acquisition in the form of "Usage Monitoring" can be used for product improvement, as the designer is provided with more accurate information about usage profiles. In addition, enhanced condition monitoring improves operational safety and contributes towards avoiding serious accidents.

Anke Zeidler-Finsel | Fraunhofer-Institut
Further information:
http://www.lbf.fraunhofer.de

More articles from Trade Fair News:

nachricht Heraeus Noblelight at the Drupa 2016
02.05.2016 | Heraeus Noblelight GmbH

nachricht Flexible robot systems for digitalized production
27.04.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>