Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous sensors monitor the condition of railway freight cars

10.09.2012
Enhanced Safety for Rail Transport: When it comes to sustainable mobility, rail transport scores high, providing low-emission operation and low land use.

Nevertheless, its market share has been going down continuously compared to road transport. Progress might be made with regard to overcoming this shortfall, if it were possible to monitor freight cars in operation.


Energy-autonomous sensor nodes undergoing field test. Photo: Fraunhofer LBF


Early detection of damage and prevention of accidents: Energyautonomous sensor nodes enable ongoing monitoring of the condition of safety-relevant components in railway traffic. Photo: Fraunhofer LBF

This would enable an early detection of imminent damage and at the same time provide for condition-based maintenance. Freight traffic would become economically more efficient and significantly safer.

Researchers at the Fraunhofer Institute for Structural Durability and System Reliability have now developed a new solution for continuous condition monitoring of railway freight cars, based on intelligent, energy-autonomous sensors, enabling damage to be detected at an early stage and accidents to be avoided.The system can be flexibly configured, and even retrofitted into existing equipment. Fraunhofer LBF will be showcasing the new solution at the Innotrans exhibition at its Booth No. 225 in Hall 4.1.

Given the harsh operating conditions with severe loads re-sulting from vibrations, temperature variations, dirt and humidity, railway equipment needs to be simple and robust. Freight cars therefore generally do not have any onboard sensors or power supply. Hence the Darmstadt researchers created a method for the development of intelligent, energy-autonomous sensor nodes for structural monitoring.

The purpose of such nodes is to analyze and transmit data, using a limited amount of energy. In the course of the development, the research team employed advanced simulation and real-time simulation tools along with Hardware-in-the-Loop methods to efficiently advance development from the first draft to the first prototype through systematic testing.

The development team at Fraunhofer LBF designed an energy harvesting system capable of converting energy present in the ambient environment in order to supply the sensor node, the energy source "tapped into" being the mechanical vibrations of the railway wagons. As ambient energy is not continuously available, the research team developed an energy management system adapted to the requirements of the application on hand, which enables the reliable acquisition, processing and wireless transmission of measurement data.

A special challenge presented itself in connection with the need for reliable transmission of the data to the driver, which resulted from the fact that there are numerous sources of interference along the transmission path. The researchers implemented the condition monitoring system using a hot box detector for monitoring of wheel bearings.

Availability of energy at the place of application

The key element of the energy-autonomous sensor system is the condition monitoring software. Several algorithms are available, which provide information regarding the proper functioning of a system or calculate its residual life.

Considering the limited amount of ambient energy avail-able onboard the freight car, an integrated approach had to be taken in the design of the energy-autonomous sensor system (EASS). At the outset of the methodical development process, the developers conducted an extensive measurement to determine the system dynamics and the service loads present on the freight car. Based on the measurement data obtained, they were able to determine an application site, at which sufficient energy to operate an EASS can be harvested. The Fraunhofer LBF researchers then designed a mechanical resonator optimized for this site, with applied piezoelectric transducers to convert mechanical vibrations present in the ambient environment with high efficiency into electrical energy.

Hardware and software for energy management and for data processing and transmission are complex systems, whose interaction was initially analyzed and optimized by the Darmstadt research team in the laboratory by means of Hardware-in-the-Loop simulations. This enabled the mechatronic systems to be assessed under realistic conditions, realistic ambient condition to be reproduced and prototype electronic devices to be evaluated. Hence, at the beginning of the development process, many of the EASS components were represented by real-time computer models and individual hardware components numerically optimized. Following successful adaptation, the system components were gradually replaced by prototypes, until a well-coordinated energy-autonomous sensor system was achieved. Upon successful implementation in the laboratory, the system was evaluated in a field test.

Improving products through "Usage Monitoring"

The new sensor nodes may help the railway industry to improve its competitiveness against other forms of transport. Condition-based monitoring of safety relevant components, made possible by the sensor node, will reduce cost compared to conventional interval-based maintenance. At the same time, the new solution maintains the capability to arbitrarily assemble train sets. Continuous data acquisition in the form of "Usage Monitoring" can be used for product improvement, as the designer is provided with more accurate information about usage profiles. In addition, enhanced condition monitoring improves operational safety and contributes towards avoiding serious accidents.

Anke Zeidler-Finsel | Fraunhofer-Institut
Further information:
http://www.lbf.fraunhofer.de

More articles from Trade Fair News:

nachricht OLED production facility from a single source
29.03.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>