Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous sensors monitor the condition of railway freight cars

10.09.2012
Enhanced Safety for Rail Transport: When it comes to sustainable mobility, rail transport scores high, providing low-emission operation and low land use.

Nevertheless, its market share has been going down continuously compared to road transport. Progress might be made with regard to overcoming this shortfall, if it were possible to monitor freight cars in operation.


Energy-autonomous sensor nodes undergoing field test. Photo: Fraunhofer LBF


Early detection of damage and prevention of accidents: Energyautonomous sensor nodes enable ongoing monitoring of the condition of safety-relevant components in railway traffic. Photo: Fraunhofer LBF

This would enable an early detection of imminent damage and at the same time provide for condition-based maintenance. Freight traffic would become economically more efficient and significantly safer.

Researchers at the Fraunhofer Institute for Structural Durability and System Reliability have now developed a new solution for continuous condition monitoring of railway freight cars, based on intelligent, energy-autonomous sensors, enabling damage to be detected at an early stage and accidents to be avoided.The system can be flexibly configured, and even retrofitted into existing equipment. Fraunhofer LBF will be showcasing the new solution at the Innotrans exhibition at its Booth No. 225 in Hall 4.1.

Given the harsh operating conditions with severe loads re-sulting from vibrations, temperature variations, dirt and humidity, railway equipment needs to be simple and robust. Freight cars therefore generally do not have any onboard sensors or power supply. Hence the Darmstadt researchers created a method for the development of intelligent, energy-autonomous sensor nodes for structural monitoring.

The purpose of such nodes is to analyze and transmit data, using a limited amount of energy. In the course of the development, the research team employed advanced simulation and real-time simulation tools along with Hardware-in-the-Loop methods to efficiently advance development from the first draft to the first prototype through systematic testing.

The development team at Fraunhofer LBF designed an energy harvesting system capable of converting energy present in the ambient environment in order to supply the sensor node, the energy source "tapped into" being the mechanical vibrations of the railway wagons. As ambient energy is not continuously available, the research team developed an energy management system adapted to the requirements of the application on hand, which enables the reliable acquisition, processing and wireless transmission of measurement data.

A special challenge presented itself in connection with the need for reliable transmission of the data to the driver, which resulted from the fact that there are numerous sources of interference along the transmission path. The researchers implemented the condition monitoring system using a hot box detector for monitoring of wheel bearings.

Availability of energy at the place of application

The key element of the energy-autonomous sensor system is the condition monitoring software. Several algorithms are available, which provide information regarding the proper functioning of a system or calculate its residual life.

Considering the limited amount of ambient energy avail-able onboard the freight car, an integrated approach had to be taken in the design of the energy-autonomous sensor system (EASS). At the outset of the methodical development process, the developers conducted an extensive measurement to determine the system dynamics and the service loads present on the freight car. Based on the measurement data obtained, they were able to determine an application site, at which sufficient energy to operate an EASS can be harvested. The Fraunhofer LBF researchers then designed a mechanical resonator optimized for this site, with applied piezoelectric transducers to convert mechanical vibrations present in the ambient environment with high efficiency into electrical energy.

Hardware and software for energy management and for data processing and transmission are complex systems, whose interaction was initially analyzed and optimized by the Darmstadt research team in the laboratory by means of Hardware-in-the-Loop simulations. This enabled the mechatronic systems to be assessed under realistic conditions, realistic ambient condition to be reproduced and prototype electronic devices to be evaluated. Hence, at the beginning of the development process, many of the EASS components were represented by real-time computer models and individual hardware components numerically optimized. Following successful adaptation, the system components were gradually replaced by prototypes, until a well-coordinated energy-autonomous sensor system was achieved. Upon successful implementation in the laboratory, the system was evaluated in a field test.

Improving products through "Usage Monitoring"

The new sensor nodes may help the railway industry to improve its competitiveness against other forms of transport. Condition-based monitoring of safety relevant components, made possible by the sensor node, will reduce cost compared to conventional interval-based maintenance. At the same time, the new solution maintains the capability to arbitrarily assemble train sets. Continuous data acquisition in the form of "Usage Monitoring" can be used for product improvement, as the designer is provided with more accurate information about usage profiles. In addition, enhanced condition monitoring improves operational safety and contributes towards avoiding serious accidents.

Anke Zeidler-Finsel | Fraunhofer-Institut
Further information:
http://www.lbf.fraunhofer.de

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>