Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromobility: Laser-Based Processes for Lightweight Battery Packs

09.09.2015

By continuing to develop the electrification of powertrains, researchers are looking to the future of mobility in economic and environmental terms: indeed, electric mobility provides valuable solutions for the automotive industry as it implements climate change objectives. Thanks to lightweight materials, the weight of the vehicles can be reduced significantly, thus increasing their operating distance. Within the framework of the joint project »Fraunhofer System Research for Electromobility II«, the Fraunhofer Institute for Laser Technology ILT has developed processes for the production of lightweight battery packs that significantly contribute to the reduction of CO2 emissions.

At the 66th International Motor Show IAA in Frankfurt, Fraunhofer ILT will be presenting the joint project »Fraunhofer System Research for Electromobility II« along with 16 other Fraunhofer institutes from 15 to 18 September 2015. Using the example of a »Lightweight Battery Pack« they will demonstrate to visitors how production technologies for lightweight construction can assist in storing the energy to power vehicles. They will be showing three different and partially complementary process technologies.


Lightweight battery pack: a combination of high-strength steel and fiber reinforced plastic.

© Fraunhofer ILT, Aachen


Battery block with hermetically sealed laser welded battery cells (Type 18650).

© Fraunhofer ILT, Aachen / Klaus D. Wolf

Laser-beam cutting and welding

For the processing of high-strength steel, it is important to avoid excessive thermal influence and, thus, material damage. Since they have such a small heat-affected zone, laser cutting and welding are particularly well suited here. In addition, these processes are economically more efficient than the traditional metal-cutting processes, since no material wear occurs.

“This process is already being used by Volvo. What is new here, however, is the combination of a plastic/metal compound for use in the car body, which we are presenting to the automotive industry for the first time. Thanks to the connection to the plastic, less steel is required in the application. Higher strength is achieved and the battery case is lighter. Through this process, we ensure that the industry can exploit the full potential of lightweight high-strength steel,” explains Dr. Alexander Olowinsky.

Joining plastic and metal

As an alternative to the conventional adhesive bonding of multi-material composites, Fraunhofer ILT will present a laser-based process of connecting simple semi-finished products, organic sheets, with metals such as high-strength steel. This process can, for example, be used in lightweight automotive construction as well as in the fields of mechanics and small components.

In the two-step method, a continuously emitting fiber laser at high speed first generates a microstructure in the metal. The structures have an undercut and are 30 µm wide and about 100 µm deep. In the subsequent joining step, the plastic is pressed against the structure and heated up to the molten phase of the matrix material. The matrix material then flows into the microstructures and locks into the undercut structures. The result: the connection is highly robust and an additive is unnecessary.

Reproducible and safe: oscillation welding for the electrical connection of battery cells

To construct complete battery packs, the Aachen researchers rely on oscillation welding with laser radiation. Here, individual battery cells (type 18650), which are normally used in power tools and notebooks, are welded together with copper contacts, therefore providing an electrical and thermal connection. The remarkable thing is that the joining at the negative pole also takes place from the top of the cell.

In a parallel circuit of 30 cells, a tight space between the battery cells is created by the design of the module and filled with PCM slurry (Phase Change Material, a mixture of paraffin and water). “By using the PCM, we are able to protect the battery cells thermally. This ultimately extends battery life,” says ILT researcher Benjamin Mehlmann. The use of laser-beam oscillation welding leads to a better control of the welding and, thus, a stable process. Moreover, the method is qualified and suitable for industrial mass production, for example, for the production of power tools.

Strengthening the German economy

Together, these three process technologies are especially suitable for the large-scale production of traction batteries for vehicles, for example, as the processes are highly automated and the energy input is easy to control. Since the market for these vehicles is steadily growing, this process development has a very promising future.

“In order to advance the battery production in Germany – currently most components are bought from abroad – our processes have to be automated, robust and less expensive. We are pleased that we can make a decisive contribution towards the production of lightweight battery packs and battery modules in Germany,” said Dr. Olowinsky.

Presentation of the lightweight battery packs at the IAA

What makes the lightweight battery pack special is that it is modular: the so-called traction batteries are suitable for hybrid vehicles as well as for use in electric vehicles with higher operating distances. Fraunhofer ILT is coordinating the subproject »Lightweight Battery Pack« within the »Fraunhofer System Research for Electromobility II«. The Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is managing the use of the PCM slurry for buffering the thermal energy.

The electric control and the battery management system have been developed by the Fraunhofer Institute for Solar Energy Systems ISE. The assessment of the plastic-metal compounds was carried out by the Fraunhofer Institute for Mechanics of Materials IWM, which used simulation and load tests to examine the mechanical design of the battery case.

First results of the crash tests as well as the entire demonstrator model of the lightweight battery packs will be shown at the joint Fraunhofer stand D33 in Hall 4.1.

Contact

Dipl.-Ing. Benjamin Mehlmann
Micro Joining Group
Telephone +49 241 8906-613
benjamin.mehlmann@ilt.fraunhofer.de

Dr. Alexander Olowinsky
Head oft he Micro Joining Group
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Electromobility Energy IAA ILT Lasertechnik battery construction oscillation plastic structures technologies vehicles

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>