Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual gloss: producing innovative surface designs by laser remelting

29.09.2011
The Fraunhofer Institute for Laser Technology ILT has developed a method of structuring the metallic surfaces of tool inserts by laser remelting.

For the first time, this method makes it possible to structure materials without resorting to ablation and at the same time to polish them to a brilliant gloss finish. This gives tool manufacturers greater scope to adapt their production processes to incorporate novel structures and design elements while also saving them time and money. Another new technique can additionally be used to provide tools and products with a dual-gloss effect.


Fig. 1: Surface with variable structures produced by laser remelting. Fraunhofer Institute for Laser Technology ILT, Aachen.


Fig. 2: Dual gloss effect: molded plastic component produced by a selectively laser-polished tool insert. Fraunhofer Institute for Laser Technology ILT, Aachen.

From steering wheels to toothbrush handles, we have become accustomed to the look and feel of structured surfaces on components we encounter in virtually all areas of our lives. Injection molding tools made from metal are often used to give these components their structure, and one method that is commonly used to produce the desired structure on the tools themselves is photochemical etching, where specific regions of the tool insert are structured by etching away the unwanted regions. However, this is a costly and time-consuming process which requires the use and disposal of large quantities of environmentally hazardous acids.

A more environmentally-friendly alternative is the technique of laser structuring by ablation, which has been used successfully for more than ten years. This method can achieve ablation rates of 1-10 mm3/min in processes designed to create structures > 10 µm, but in many cases the workpiece subsequently requires further treatment to remove the melt residue which accumulates during ablation. In addition, the laser requires some ten passes to achieve a structure depth of 200 µm, which means that the laser-based structuring of large surfaces through ablation is generally not a cost-effective option for tool manufacturers.

Remelting instead of ablation

Fraunhofer ILT has now developed a method of structuring tools using laser remelting. The laser beam travels over the workpiece and the resulting heat input melts the metal surface. At the same time, the laser power is modulated in order to continuously change the size of the melt pool at defined points. »This modulation causes the material to be redistributed, creating mountains and valleys: half of the resulting structure lies above its initial level, while the other half lies below it,« says André Temmler, project manager at Fraunhofer ILT. Thanks to surface tension, when the uppermost layer of the molten material solidifies, it exhibits uniformly low roughness, and the surface is left with a brilliant polished finish. Unlike laser structuring by ablation, the novelty of laser structuring by remelting is its ability to directly produce finished surfaces which do not require any post-processing. For a structure depth of approximately 200 µm, this method can achieve processing rates of up to 75 mm2/min, enabling a volume redistribution rate of 15 mm³/min in a single pass. A further advantage of this new method is that it consumes less energy and fewer resources than conventional laser-based structuring by ablation. Less energy is required for melting than for sublimation, the process requires significantly fewer passes, and there is no loss of material. Depending on the material and batch size, these benefits can yield considerable time and cost savings for tool manufacturers. For flat surfaces and single-curved component geometries, the laser technique of structuring by remelting is already available for industrial use. Temmler and his team are now working on applying the technique to freeform surfaces.

Dual-gloss effect by selective laser polishing

In cases where an additional dual-gloss effect is required for end products such as decorative elements or an entire product surface, the first step is to apply a matt finish to the whole surface of the tool, which is generally achieved through blasting with glass beads or sand. Selected regions are then remelted using a laser beam. These regions solidify from the melt with a polished finish – in other words, the selective laser polishing creates a contrast between the matt, untreated areas and the brilliant, laser-polished areas. Depending on the intensity of the dual gloss, this can even produce a 3D effect in which the polished points appear to protrude from the surface. One example of how selective laser polishing can be used is to provide structured tools designed to apply a leather grain structure to plastic components with a dual-gloss effect which is then transferred to the end product during the molding process. For the first time, this selective polishing technique can now be applied on an industrial scale for both flat and freeform surfaces.

Visitors to the joint Fraunhofer Booth C66 in Hall 11 at EuroMold 2011 will have the opportunity to see components produced with workpieces which were laser structured by remelting. Our experts will also be presenting a selection of sample objects molded in plastic by selectively laser-polished tools.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
André Temmler
Polishing
Phone +49 241 8906-299
andre.temmler@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Additive Manufacturing and Functional Layers
Phone +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

Further reports about: ILT information technology laser beam laser system production process

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Molecule flash mob

19.01.2017 | Physics and Astronomy

Rabies viruses reveal wiring in transparent brains

19.01.2017 | Health and Medicine

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>