Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Devarnishing by electron beam

18.05.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its electron beam technology as an alternative beam tool for devarnishing at the parts2clean trade show in Stuttgart, from May 31st to June 2nd, 2016 at the joint booth of the Fraunhofer Cleaning Technology Alliance, Hall 7, Booth B41.

Precise, selective devarnishing of layers from a substrate plays an important role in numerous industrial production processes. The manufacture of precision resistors, sensor fabrication, and production of electronic displays and monitors can be mentioned here as key examples.


Fabrication of operational microfeatures through precision electron beam devarnishing

© Fraunhofer FEP

A typical job would be to etch operational electronic layers such as resists on plastic, ceramic, or glass substrates at the micron-scale in order to trim characteristics to the desired level, such as precise balancing of electrical resistances, setting sensor values, as well as defining the smallest units of operation.

It is important during this step that devarnishing of the layer be as residue-free as possible while causing a minimum of thermal and mechanical stress to the carrier substrate, which can be a real challenge particularly in the case of plastics.

Beam tools offer crucial advantages here, as they provide the necessary accuracy without contacting the work piece during processing. The laser is a tool that has become standard in many fields of application. It ablates or blasts away the intended areas of the layer by intense inputs of pulsed energy.

Fraunhofer FEP will be presenting the electron beam as an alternative though far less familiar beam process – despite its diverse opportunities for application – to a broad public as part of “Devarnishing”, this year’s main theme at the parts2clean trade show.

The scientists at Fraunhofer FEP have been involved with the design and manufacture of suitable beam sources for many decades and develop tailored solutions for specific processing jobs jointly with clients.

Specialized properties of electron beam technology open up several important advantages compared to other processes for devarnishing layers. In contrast to the laser, whose energy is quickly absorbed at the surface (especially in the case of metallic layers), absorption of the electron beam takes place in the bulk of the layer.

This enables the penetration depth of the beam to be exactly set according to layer thicknesses that are present. The irradiated bulk is thereby heated directly rather than relying on indirect thermal conduction processes and is removed from the beam track as molten liquid. In this respect, the electron beam does not differentiate between optically transparent and optically absorptive layers, so that one and the same beam source can be used for both types of materials.

Thanks to the selective depth mentioned above and being able to very quickly direct the continuous beam, thermal stresses on the substrate can be kept very small. This enables it to be used on flexible plastic substrates. For micron-level work, the electron beam can be steered and diverted about 10 to 15 times faster than a laser beam at the same working distance.

“The electron beam diameter can be matched to the application, which expands its possibilities for utilization even more. The diameter can even get down to the nanometer range and is being employed especially for high-precision electron-beam devarnishing by means of locally induced gas-phase etching”, explains Benjamin Graffel, one of the scientists in the department Electron Beam Processes at Fraunhofer FEP. “This is already being used for repairing lithography masks in microelectronics, for example.”

The biggest disadvantage frequently mentioned for electron beam technology is the necessity of using vacuum engineering. However, a vacuum actually delivers some important prerequisites for precise devarnishing of thin layers: the absence of air prevents oxidation of adjacent areas during thermal processing, experience indicates trimming resistances is considerably more accurate and reproducible without the presence of humidity, and contamination of the substrate is reduced.

Fraunhofer FEP is a member of the Fraunhofer Cleaning Technology Alliance that dedicates itself to devarnishing, among other topics. The process chain of cleaning technology comprises more than just different cleaning processes. Upstream processes help avoid contamination or reduce the effort and expense of cleaning. Downstream processes include monitoring the effectiveness of cleaning as part of quality assurance, auxiliary cleaning agents, and environmentally sound disposal of contaminants. The expertise of the Fraunhofer institutes covers the entire process chain of cleaning technology. The Fraunhofer Cleaning Technology Alliance bundles and coordinates the relevant expertise of the Fraunhofer institutes. In this way, all of the processes across the entire field of cleaning technology are covered. The Fraunhofer institutes provide a unique range of services for industrial customers.

Fraunhofer FEP at parts2clean 2016

Talk

Wednesday, June 1
Session: Deburring and Devarnishing
Devarnishing – If the functional layer becomes a contaminant!
Dipl.-Phys. Frank-Holm Rögner, Head of Department Electron Beam Processes

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/twF

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>