Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Detecting residual stresses on freight train wheels


From 23 to 26 September 2014, Fraunhofer IZFP engineers present a new and enhanced generation of test equipment for rapid and reliable determination of residual stresses in rims at InnoTrans in Berlin, (hall 23B, booth 206).

In the case of a car, the braking operation is carried out in seconds – jamming on the brakes and shortly afterwards the vehicle has stopped. But with a fully loaded freight train weighing lots of tons braking takes much longer – on long descents braking, which is required to prevent the train’s unwanted acceleration, can even take more than 30 minutes.

Determination of residual stresses in freight train wheels

Uwe Bellhäuser

For the wheels and brakes this long braking time means hard work – such a strong mechanical loading and heating of the wheels may cause so-called tensile residual stresses, which can lead to cracks in the wheel tread and – worst case – to wheel breakage.

Geislinger Steige and Tauernbahn are best examples for routes that cause heavy endurance stress in wheels. Their strong inclinations and partly narrow radii require the permanent use of the wagons´ block brakes which generate the braking force by pressing the brake shoes against the tread of the wheels.

The scientists and engineers of the Fraunhofer Institute for Nondestructive Testing IZFP performed an elaborate redesign of the hard- and software of the so-called UER systems* by evaluating the experience gained with previous versions of the systems. Thus, they succeeded in adapting the new versions even better to the specific needs of the maintenance and wheel manufacturers plants.

While maintaining ease of use a variety of options for customer-specific documentation and report generation have been added. In particular, for the testing of newly manufactured wheels an optional software evaluation module is now available.

All UER systems, the new ones as well as all previously delivered systems, are integrated into the remote maintenance network of Fraunhofer IZFP, i.e. in case of a failure the service team is able to perform an extensive error analysis by remote access via Internet.

The inspection instruments are applied in the manufacturing process of new wheels, but especially in the maintenance of the freight train wheels.

Weitere Informationen:

Sabine Poitevin-Burbes | idw - Informationsdienst Wissenschaft

Further reports about: Testing acceleration brakes cracks heating mechanical specific stresses

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>