Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-effective titanium forming

16.10.2012
Titanium is a material that offers excellent properties, however, it is costly and time-consuming to form. Fraunhofer researchers are now giving this multi-purpose metal another chance. They are presenting an economical forming technology for car exhaust systems at the EuroBlech trade fair (Hall 11, Booth B06) from 23 to 27 October in Hannover, Germany.

To all intents and purposes, nothing stands in the way of titanium in terms of becoming a first-choice industrial material. It is a practically unlimited resource; it is stable and lightweight, but also extremely malleable as well as corrosion and temperature resistant.


Schematic diagram depicting the forming process for titanium pipes within a process stage.
© Fraunhofer IWU

Nevertheless, this white silver lustrous metal remains in the shadows of steel, chrome, nickel and aluminum when it comes to manufacturing. The reason for this is that efficient metal forming processes such as deep drawing or hydroforming can only be used in a very limited way. “Titanium tends to adhere to the forming tools. This leads to major damage which can cause components to fail in the worst case. This effect is amplified by the extremely high temperatures of up to 800 °C, at which titanium has to be formed“, explains André Albert, group leader for media based forming technologies at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz, Germany.

Premiere at EuroBlech
In collaboration with his colleagues at the Fraunhofer Institute for Surface Engineering and Thin Films IST in Braunschweig, Germany, he has developed a new technology for hydroforming titanium car exhaust systems at elevated temperatures. This new method enables forming to be undertaken in a single process stage. Researchers are now presenting the initial results of the joint project at the EuroBlech trade fair (Hall 11, Booth B06) from 23 to 27 October in Hannover, Germany.

Up until now, a minimum of three stages were necessary utilizing intermediate heat treatments which partially required processing at different locations. The scientists have now developed a process and custom tool which can withstand temperatures of over 800 °C. “Forming titanium at room temperatures leads to severe cold work hardening of the processed pipe. In order to prevent cracking, the metal requires frequent treatment by means of recrystallization processes. This leads to extremely complex multi-stage forming processes which are not economically viable in large-volume production of exhaust systems. This microstructural change can be avoided at extremely high temperatures“, explains Albert.

The approximately 1.40 x 1.20 meter forming tool is manufactured from high-performance materials such as nickel-base alloys which remain stable at temperatures over 800 °C without oxidizing. A special coating, just a few micrometers thick prevents titanium from adhering to the tool, which can lead to component cracking and severe damage to the surface. Martin Weber, expert for new tribological coatings at IST says: “At temperatures from approximately 500 °C, titanium exhibits a strong tendency to combine with oxygen and nitrogen from the surrounding atmosphere. For this reason, it is necessary to work with shielding gases at extremely high temperatures, such as argon, in order to prevent oxidization of the titanium. After extensive testing with various materials, we were able to develop the ideal coating for the special conditions encountered within the various temperature ranges.“

Ideal for a broad range of applications
Titanium is extremely versatile. Approximately 40 percent of the worldwide production is used in the aerospace industry. In this sector it is used, for example, in window frames, hydraulic lines and jet engine components. Additional applications include pipes and containers for the chemicals industry, seawater-resistant components for offshore wind farms, implants, pacemakers or surgical instruments as well as consumables such as bicycle frames and items of piercing jewelry.

In the automotive industry, this versatile metal has only been used for high-end vehicles and motor sport applications up until now. However, it offers a great deal of potential, especially for mass production of exhaust systems. Due to the lack of cost-effective forming technologies for titanium, currently manifolds, exhaust pipes, catalytic converters and mufflers are primarily manufactured from high-alloy stainless steel. In doing so, titanium would not only be lighter – a total weight advantage of 40 percent can be achieved per component. It is also more available – titanium belongs to the ten most frequently occurring substances in the earth‘s crust.

André Albert | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/october/cost-effective-titanium-forming.html

More articles from Trade Fair News:

nachricht Industrial laser processing of fiber reinforced plastics at JEC 2016
12.02.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht PHOTONICS CONGRESS CHINA 2016
04.02.2016 | Messe München GmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>