Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-effective titanium forming

16.10.2012
Titanium is a material that offers excellent properties, however, it is costly and time-consuming to form. Fraunhofer researchers are now giving this multi-purpose metal another chance. They are presenting an economical forming technology for car exhaust systems at the EuroBlech trade fair (Hall 11, Booth B06) from 23 to 27 October in Hannover, Germany.

To all intents and purposes, nothing stands in the way of titanium in terms of becoming a first-choice industrial material. It is a practically unlimited resource; it is stable and lightweight, but also extremely malleable as well as corrosion and temperature resistant.


Schematic diagram depicting the forming process for titanium pipes within a process stage.
© Fraunhofer IWU

Nevertheless, this white silver lustrous metal remains in the shadows of steel, chrome, nickel and aluminum when it comes to manufacturing. The reason for this is that efficient metal forming processes such as deep drawing or hydroforming can only be used in a very limited way. “Titanium tends to adhere to the forming tools. This leads to major damage which can cause components to fail in the worst case. This effect is amplified by the extremely high temperatures of up to 800 °C, at which titanium has to be formed“, explains André Albert, group leader for media based forming technologies at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz, Germany.

Premiere at EuroBlech
In collaboration with his colleagues at the Fraunhofer Institute for Surface Engineering and Thin Films IST in Braunschweig, Germany, he has developed a new technology for hydroforming titanium car exhaust systems at elevated temperatures. This new method enables forming to be undertaken in a single process stage. Researchers are now presenting the initial results of the joint project at the EuroBlech trade fair (Hall 11, Booth B06) from 23 to 27 October in Hannover, Germany.

Up until now, a minimum of three stages were necessary utilizing intermediate heat treatments which partially required processing at different locations. The scientists have now developed a process and custom tool which can withstand temperatures of over 800 °C. “Forming titanium at room temperatures leads to severe cold work hardening of the processed pipe. In order to prevent cracking, the metal requires frequent treatment by means of recrystallization processes. This leads to extremely complex multi-stage forming processes which are not economically viable in large-volume production of exhaust systems. This microstructural change can be avoided at extremely high temperatures“, explains Albert.

The approximately 1.40 x 1.20 meter forming tool is manufactured from high-performance materials such as nickel-base alloys which remain stable at temperatures over 800 °C without oxidizing. A special coating, just a few micrometers thick prevents titanium from adhering to the tool, which can lead to component cracking and severe damage to the surface. Martin Weber, expert for new tribological coatings at IST says: “At temperatures from approximately 500 °C, titanium exhibits a strong tendency to combine with oxygen and nitrogen from the surrounding atmosphere. For this reason, it is necessary to work with shielding gases at extremely high temperatures, such as argon, in order to prevent oxidization of the titanium. After extensive testing with various materials, we were able to develop the ideal coating for the special conditions encountered within the various temperature ranges.“

Ideal for a broad range of applications
Titanium is extremely versatile. Approximately 40 percent of the worldwide production is used in the aerospace industry. In this sector it is used, for example, in window frames, hydraulic lines and jet engine components. Additional applications include pipes and containers for the chemicals industry, seawater-resistant components for offshore wind farms, implants, pacemakers or surgical instruments as well as consumables such as bicycle frames and items of piercing jewelry.

In the automotive industry, this versatile metal has only been used for high-end vehicles and motor sport applications up until now. However, it offers a great deal of potential, especially for mass production of exhaust systems. Due to the lack of cost-effective forming technologies for titanium, currently manifolds, exhaust pipes, catalytic converters and mufflers are primarily manufactured from high-alloy stainless steel. In doing so, titanium would not only be lighter – a total weight advantage of 40 percent can be achieved per component. It is also more available – titanium belongs to the ten most frequently occurring substances in the earth‘s crust.

André Albert | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/october/cost-effective-titanium-forming.html

More articles from Trade Fair News:

nachricht OLED production facility from a single source
29.03.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>