Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-effective manufacturing of large-volume components with combined SLM and casting method

25.11.2014

In the past, selective laser melting (SLM) technology has been cost effective only for manufacturing components with relatively small volumes. In an innovative breakthrough that combines SLM with casting, now the Fraunhofer Institute for Laser Technology ILT has developed a cost-effective method for manufacturing solid, large-volume components using SLM. For the first time at EuroMold 2014, experts will be presenting tool inserts with conformal cooling channels that were made using the combined method.

Injection molding is used to make the majority of plastic components. With additive manufacturing techniques such as SLM, it is possible to integrate complex conformal cooling channels into the tool inserts required for injection molding.


Mold insert, made using the combined method of Selective Laser Melting and casting.

Picture Source: Fraunhofer ILT, Aachen, Germany


Tool cavity of tool steel, made with SLM and filled with grey cast iron.

Picture Source: Fraunhofer ILT, Aachen, Germany

These channels allow the tool mold to be heated up during the injection process, and the melt to cool down quickly and evenly – resulting in rapid, distortion-free manufacturing. However, the manufacture of large-volume tool inserts using SLM is very cost-intensive, because the main production costs are volume-dependent.

To tackle this problem, scientists from Fraunhofer ILT have teamed up with the Foundry Institute at RWTH Aachen University and partners from industry in a bid to combine SLM and casting methods. In the “GenCast” project, which is funded by the German Federal Ministry of Education and Research as part of the Central Innovation Program SME (or “ZIM” in German), the project partners have worked together to build up the requisite process understanding and developed the process chain for the combined method.

Combined method brings down manufacturing costs for tool inserts

The idea behind combining the two methods is to manufacture the shell of the tool insert from hot work steels (1.2343 or 1.2709) using SLM. During this process, cooling channels with complex geometries are still integrated in the exact places where they are needed to heat or cool the component.

The shell built up using this technique serves as a casting mold, which is rapidly and cost-effectively filled with gray cast iron (e.g. GJL-200) or highly thermal conductive copper in a subsequent casting process. This cuts production times by up to 80% compared to components made using SLM alone. The bigger a component is, the more the advantages of this combined method come into play. It can be used cost-effectively from part sizes of only half a liter upward.

Fraunhofer ILT at EuroMold 2014

EuroMold is the world’s leading trade fair for tool and mold construction, design, and product development. This year, the event will be taking place in Frankfurt from November 25 to 28. In Hall 11/C66, Fraunhofer ILT will be unveiling a demonstrator component made using the combined method, a tool core with cross-sectional cooling channels that it will be showcasing to the public for the very first time.

Contact

Dr. Wilhelm Meiners
Head of the Rapid Manufacturing Group
Phone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Dr. Konrad Wissenbach
Head of the Competence Area Additive Manufacturing and Functional Layers
Phone +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany


Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>