Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Composites Europe 2012 - Electrostatic gripper automates handling of carbon fiber materials

29.08.2012
The Fraunhofer IPT is presenting an automated, highly flexible electrostatic gripper system which is capable of lifting semi-finished textile products made of carbon fibers and other materials and putting them down again with pin-point accuracy, without damaging them. The demonstration is part of the joint Fraunhofer-Gesellschaft booth, Hall 8a, Booth A11.
Picking up and depositing carbon-fiber materials automatically

Handling non-rigid, semi-finished products such as woven carbon-fiber mats is technologically a challenging task. So far, the human hand can pick up and deposit a semi-finished textile at a given point, more efficiently than any machine. Accordingly, the manufacture of semi-finished textile goods has traditionally been labor intensive and costly.

The Fraunhofer IPT has therefore developed a gripper system capable of picking up the semi-finished textile product automatically and depositing it as required – more reliably, reproducibly and accurately than a human operative and without damaging the delicate textiles. Electrostatic phenomena are the key. An electric charge is applied to the material. This causes an attraction between the material and the gripper which is sufficiently strong to lift the semi-finished product. Now, for the first time, the electrostatic gripper is also capable of positioning the object in its grasp accurately when it puts it down.
Modular gripper system for a range of manufacturing processes

The gripper can also be constructed in modular fashion. Consequently, it can be adapted to suit virtually any manufacturing process. In conjunction with an adaptive gripper arm and the facility to activate gripper elements individually, it is possible to pick up blanks from a cutting table and lay them down on a curved tool mold, for example. This enables the gripper to handle sheet materials and other flat semi-finished goods as well as carbon fiber materials.

During Composites Europe, The Fraunhofer IPT will present a gripper prototype which will demonstrate the capabilities of the system. The business unit “Lightweight Production Technology” will also present new scope for designing the manufacture of three-dimensional parts in automated tape laying operations as well as fiber-composite product development for medical engineering.

Contact

Dr.-Ing. Michael Emonts
Fraunhofer-Institute for
Production Technology IPT
Steinbachstr. 17
52074 Aachen
Telephone +49 241 8904-150
Fax +49 241 8904-6150
michael.emonts@ipt.fraunhofer.de

Joachim Riegel | Fraunhofer-Institut
Further information:
http://www.ipt.fraunhofer.de

More articles from Trade Fair News:

nachricht New MAX Infrared Oven is Five Times Faster For Glass Tempering
08.07.2016 | Heraeus Noblelight GmbH

nachricht International companies showcase their innovations at Medical Manufacturing Asia in Singapore
21.06.2016 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>