Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT: VibroTrack – Measuring wind turbines from a distance

25.02.2014
The rotor and tower of a wind turbine can vibrate excessively even in normal operation. The analysis of these vibrations plays an important role in development and maintenance. Previously this was possible only selectively and directly on the installation. The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB uses modern information technology to measure the vibration pattern of the entire system structure from a distance of several hundred meters.

The rotor and tower of a wind turbine can vibrate excessively even in normal operation. The analysis of these vibrations plays an important role in development and maintenance. Previously this was possible only selectively and directly on the installation. The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB uses modern information technology to measure the vibration pattern of the entire system structure from a distance of several hundred meters.


VibroTrack - Measuring wind turbines from a distance

The scientists will present the system concept at CeBIT at the Fraunhofer stand in Hall 9.

Even at normal wind speeds wind turbines oscillate by up to one meter. This places considerable strain on the material, which can cause damage and – in the worst case – system failure. Operators are therefore continually examining the magnitude of these vibrations with the help of sensors installed in the tower and rotor blades. The downside of this approach is that measurements can be taken only at those points at which sensors have been fitted. A complete pattern of vibrations for the entire installation cannot be obtained with this method. Offshore installations have additional requirements.

Researchers at the Fraunhofer IOSB have tackled this problem. At CeBIT in Hanover, they will present a system with which comprehensive vibration analyses of the entire installation can be performed from a distance of several hundred meters. The system contains a laser that is directed at the installation and is used to measure vibrations at any point of the wind turbine’s surface. To measure the vibration in moving parts, such as the rotor blades, the laser automatically follows their movement.

The tracking process is the key

This is achieved with the heart of the system – an IT-based tracking system, which is linked with the laser and image analysis system. Camera and laser are mounted on a pan-tilt head, allowing them to follow any point on a rotating rotor blade. The camera captures images of the installation and transmits them to image processing software, which uses them to generate a virtual model of the blades. Using these data, the tracking system controls the pan-tilt head to keep the laser focused on the rotor blades. At the same time the camera collects information about the exact position of the laser point on the rotor blade, which has a diameter of about two to three centimeters, to stabilize its orientation on the rotating wings.

By this method any number of points on the running installation can be scanned, even from a distance. The resulting analyses are quickly obtained and more comprehensive than with permanently installed sensors. The measurement duration is variable: The slower the vibrations, the longer the laser takes to measure them.

The compact system is mobile and can be taken to the desired location with a vehicle. Because of its high range it can also be used to study offshore installations from a ship, provided the ship’s own motion is compensated. Many wind farms in Germany have been in operation for more than 20 years, which is often their maximum lifespan. Operators can use this technology to evaluate their installations. The system provides decision-making support on issues such as: Does the condition of the installation allow its continued use? Do I sell it or do I build a new one on the same site?

At CeBIT, the researchers will present a prototype of the diagnostic tool. On a two-meter diameter model wind turbine at the joint Fraunhofer stand (Hall 9, Stand E40), visitors can follow the path of the eye-safe laser beam as a green dot on the rotor blades. On two connected screens the images from the camera and the vibration analysis can be seen.

The scientists will present the system at CeBIT at the Fraunhofer stand in Hall 9.

Weitere Informationen:

http://www.iosb.fraunhofer.de/servlet/is/43411/

Dipl.-Ing. Sibylle Wirth | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht New MAX Infrared Oven is Five Times Faster For Glass Tempering
08.07.2016 | Heraeus Noblelight GmbH

nachricht International companies showcase their innovations at Medical Manufacturing Asia in Singapore
21.06.2016 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

From vision to hand action

26.07.2016 | Life Sciences

Severity of enzyme deficiency central to favism

26.07.2016 | Life Sciences

The Glowing Brain

26.07.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>