Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT: VibroTrack – Measuring wind turbines from a distance

25.02.2014
The rotor and tower of a wind turbine can vibrate excessively even in normal operation. The analysis of these vibrations plays an important role in development and maintenance. Previously this was possible only selectively and directly on the installation. The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB uses modern information technology to measure the vibration pattern of the entire system structure from a distance of several hundred meters.

The rotor and tower of a wind turbine can vibrate excessively even in normal operation. The analysis of these vibrations plays an important role in development and maintenance. Previously this was possible only selectively and directly on the installation. The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB uses modern information technology to measure the vibration pattern of the entire system structure from a distance of several hundred meters.


VibroTrack - Measuring wind turbines from a distance

The scientists will present the system concept at CeBIT at the Fraunhofer stand in Hall 9.

Even at normal wind speeds wind turbines oscillate by up to one meter. This places considerable strain on the material, which can cause damage and – in the worst case – system failure. Operators are therefore continually examining the magnitude of these vibrations with the help of sensors installed in the tower and rotor blades. The downside of this approach is that measurements can be taken only at those points at which sensors have been fitted. A complete pattern of vibrations for the entire installation cannot be obtained with this method. Offshore installations have additional requirements.

Researchers at the Fraunhofer IOSB have tackled this problem. At CeBIT in Hanover, they will present a system with which comprehensive vibration analyses of the entire installation can be performed from a distance of several hundred meters. The system contains a laser that is directed at the installation and is used to measure vibrations at any point of the wind turbine’s surface. To measure the vibration in moving parts, such as the rotor blades, the laser automatically follows their movement.

The tracking process is the key

This is achieved with the heart of the system – an IT-based tracking system, which is linked with the laser and image analysis system. Camera and laser are mounted on a pan-tilt head, allowing them to follow any point on a rotating rotor blade. The camera captures images of the installation and transmits them to image processing software, which uses them to generate a virtual model of the blades. Using these data, the tracking system controls the pan-tilt head to keep the laser focused on the rotor blades. At the same time the camera collects information about the exact position of the laser point on the rotor blade, which has a diameter of about two to three centimeters, to stabilize its orientation on the rotating wings.

By this method any number of points on the running installation can be scanned, even from a distance. The resulting analyses are quickly obtained and more comprehensive than with permanently installed sensors. The measurement duration is variable: The slower the vibrations, the longer the laser takes to measure them.

The compact system is mobile and can be taken to the desired location with a vehicle. Because of its high range it can also be used to study offshore installations from a ship, provided the ship’s own motion is compensated. Many wind farms in Germany have been in operation for more than 20 years, which is often their maximum lifespan. Operators can use this technology to evaluate their installations. The system provides decision-making support on issues such as: Does the condition of the installation allow its continued use? Do I sell it or do I build a new one on the same site?

At CeBIT, the researchers will present a prototype of the diagnostic tool. On a two-meter diameter model wind turbine at the joint Fraunhofer stand (Hall 9, Stand E40), visitors can follow the path of the eye-safe laser beam as a green dot on the rotor blades. On two connected screens the images from the camera and the vibration analysis can be seen.

The scientists will present the system at CeBIT at the Fraunhofer stand in Hall 9.

Weitere Informationen:

http://www.iosb.fraunhofer.de/servlet/is/43411/

Dipl.-Ing. Sibylle Wirth | Fraunhofer-Institut

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>