Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drugs: Interactive software simplifies research

22.03.2012
At Analytica 2012, Fraunhofer FIT presents software that supports the search for new active pharmaceutical ingredients of cancer drugs. Through a high degree of parallelization, the software can analyze complex biological processes very fast, even with large amounts of data.

Imaging technology is essential in the search for new active pharmaceutical ingredients for cancer drugs. Analyzing the large amounts of generated image data is time-consuming, often taking longer than the recording processes.


Zeta's clean graphical user interface: A few mouse clicks train the software to detect the cell cycle phases of HeLa cells. (c) Fraunhofer FIT

Here the Zeta software helps by simplifying the analysis and also by processing large amounts of data in a very short time. It takes just a few mouse clicks to train the software to recognize and classify specific cell patterns. Thus, Zeta can be adapted very flexibly to a wide range of biological analyses.

Fraunhofer FIT just extended their Zeta software to live cell imaging, which allows to monitor and record cancer cells across their full life cycle. Promising lead compounds are applied to the living cells – many thousands in parallel in different assays. Substances that block the division of cancerous cells but leave healthy cells untouched are potentials for cancer drugs.

These experiments are largely automated. A computer-controlled microscope generates series of images of the living cells, which are then processed by robust image analysis software. Here, the Zeta software assists the researchers by monitoring and quantifying the living cancer cells more precisely.

A particular challenge for the image analysis was to differentiate the phases of the cell cycle and to determine their transitions. "We need to identify the cells as objects and need to determine their individual cell cycle phases, but we also need to monitor the progression of the cycle from one phase to the next", explains Prof. Thomas Berlage, the head of the Life Science Informatics department of Fraunhofer FIT.

A special feature of Zeta is its plug-in architecture, which allows the users to adapt the software very flexibly. When the program is started, a config file loads only those modules that are necessary for the analysis task at hand. As an example, the Foreground/Background plug-in is used to differentiate cell objects from the background. Here, Zeta offers an interactive procedure: A few mouse clicks by the user identify cancer cells and background regions. These examples train Zeta to discern cell objects and background; the software provides immediate visual feedback. This interactive trainability is a major advantage, as it enables Zeta to identify new cell types without changes to the software.

Additional plug-ins discern individual cells in cell clusters, identify their individual cell cycle phases or eliminate the motion artifacts typical of live cell imaging experiments.

The Fraunhofer Institute for Applied Information Technology FIT presents the Zeta software at Analytica 2012, held April 17 – 20, 2012 in Munich. Visit us in the Fraunhofer booth, Hall A1, Booth 433/530.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Telefon +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>