Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

22.04.2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25 to 29 April 2016. Their focus is on the ELiSE lightweight construction method, which uses structures from nature to gain a developmental edge over methods that start from scratch.


Jedes Jahr ist ELiSE Leichtbau auf der Hannovermesse vertreten und überzeugt Kunden aus Industrie und Wirtschaft von den Vorteilen des bionischen Leichtbaus. (Foto: Paul Bomke)

The industry is currently looking for lightweight reinforcement of complex flat and 3D-components. The AWI researchers have developed and built a holo pyramid that allows them to demonstrate the different procedures to the trade fair visitors.

Life forms that are perfectly adapted to their environment are successful, those with poor adaptation do not survive during the course of evolution. The researchers have embraced this principle: they study the technical principles of animals and plants to derive a lightweight construction principle and to optimise structures.

At the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) the biologists and engineers working on bionic lightweight constructions have specialised in single-celled sea algae such as diatoms. These phytoplankton organisms fascinate the researchers as they have extremely light yet stable silica shells, which are expressed in a wide variety of complex geometric structures.

“We are currently working on a method that automatically reinforces surfaces with a load-oriented honeycomb geometry,” says Dr Christian Hamm, head of the bionic lightweight construction department at the Alfred Wegener Institute about their current research focus.

The automobile and aviation industry currently has a great demand for such particularly tough, rigid and at the same time lightweight structures. The AWI researchers have already successfully collaborated with partners from diverse industries, such as the automotive industry, the healthcare sector, shipbuilders and manufacturers of offshore constructions.

Here, the AWI bionics researchers focus on their patented development method: ELiSE – Evolutionary Light Structure Engineering. The optimal development of a product passes several stages: First, the structures of the 90,000 samples of the Hustedt Diatom Collection and the internal database are investigated to find diverse lightweight principles with a high potential for a technical adaptation. The modes of action behind the function are abstracted into bionic concepts, analysed using computer models and optimised in several stages.

The components optimized with the ELiSE method can be produced with various materials, such as metal or plastics and using different processes such as 3D print, injection moulding and sheet metal construction. The AWI researchers use, for example, additive manufacturing to produce components with a 3D printer. To give the trade fair visitors a vivid impression of the various possibilities offered by their bionic approach to develop new lightweight solutions, the AWI researchers came up with something very special:

They constructed a holo pyramid that visualises the various processes and bionic reinforcement structures as three-dimensional holograms. They have also brought with them components that they printed in their Lab as well as last year's trade fair exhibit (the folding Bionic Bike developed in a 3D print process) to present the full spectrum of exhibits to the visitors.

Seven members of the bionic lightweight construction team of the Alfred Wegener Institute are looking forward to discuss innovative lightweight solutions at Hannover Messe from 25 to 29 April in hall 2, stand A01.

Notes for Editors:

Your scientific contact person at the Alfred Wegener Institute is Dr Christian Hamm, tel. ++49 471 4831-1832 (e-mail: Christian.Hamm(at)awi.de).

Your contact person in the Dept. of Communications and Media Relations is Dr Folke Mehrtens, tel. ++49 471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Bionics at AWI: http://www.awi.de/en/science/special-groups/bionics.html

Please find printable images and a video (German language) in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://elise.de/en/ - ELiSE

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>