Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

22.04.2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25 to 29 April 2016. Their focus is on the ELiSE lightweight construction method, which uses structures from nature to gain a developmental edge over methods that start from scratch.


Jedes Jahr ist ELiSE Leichtbau auf der Hannovermesse vertreten und überzeugt Kunden aus Industrie und Wirtschaft von den Vorteilen des bionischen Leichtbaus. (Foto: Paul Bomke)

The industry is currently looking for lightweight reinforcement of complex flat and 3D-components. The AWI researchers have developed and built a holo pyramid that allows them to demonstrate the different procedures to the trade fair visitors.

Life forms that are perfectly adapted to their environment are successful, those with poor adaptation do not survive during the course of evolution. The researchers have embraced this principle: they study the technical principles of animals and plants to derive a lightweight construction principle and to optimise structures.

At the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) the biologists and engineers working on bionic lightweight constructions have specialised in single-celled sea algae such as diatoms. These phytoplankton organisms fascinate the researchers as they have extremely light yet stable silica shells, which are expressed in a wide variety of complex geometric structures.

“We are currently working on a method that automatically reinforces surfaces with a load-oriented honeycomb geometry,” says Dr Christian Hamm, head of the bionic lightweight construction department at the Alfred Wegener Institute about their current research focus.

The automobile and aviation industry currently has a great demand for such particularly tough, rigid and at the same time lightweight structures. The AWI researchers have already successfully collaborated with partners from diverse industries, such as the automotive industry, the healthcare sector, shipbuilders and manufacturers of offshore constructions.

Here, the AWI bionics researchers focus on their patented development method: ELiSE – Evolutionary Light Structure Engineering. The optimal development of a product passes several stages: First, the structures of the 90,000 samples of the Hustedt Diatom Collection and the internal database are investigated to find diverse lightweight principles with a high potential for a technical adaptation. The modes of action behind the function are abstracted into bionic concepts, analysed using computer models and optimised in several stages.

The components optimized with the ELiSE method can be produced with various materials, such as metal or plastics and using different processes such as 3D print, injection moulding and sheet metal construction. The AWI researchers use, for example, additive manufacturing to produce components with a 3D printer. To give the trade fair visitors a vivid impression of the various possibilities offered by their bionic approach to develop new lightweight solutions, the AWI researchers came up with something very special:

They constructed a holo pyramid that visualises the various processes and bionic reinforcement structures as three-dimensional holograms. They have also brought with them components that they printed in their Lab as well as last year's trade fair exhibit (the folding Bionic Bike developed in a 3D print process) to present the full spectrum of exhibits to the visitors.

Seven members of the bionic lightweight construction team of the Alfred Wegener Institute are looking forward to discuss innovative lightweight solutions at Hannover Messe from 25 to 29 April in hall 2, stand A01.

Notes for Editors:

Your scientific contact person at the Alfred Wegener Institute is Dr Christian Hamm, tel. ++49 471 4831-1832 (e-mail: Christian.Hamm(at)awi.de).

Your contact person in the Dept. of Communications and Media Relations is Dr Folke Mehrtens, tel. ++49 471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Bionics at AWI: http://www.awi.de/en/science/special-groups/bionics.html

Please find printable images and a video (German language) in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://elise.de/en/ - ELiSE

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>