Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

22.04.2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25 to 29 April 2016. Their focus is on the ELiSE lightweight construction method, which uses structures from nature to gain a developmental edge over methods that start from scratch.


Jedes Jahr ist ELiSE Leichtbau auf der Hannovermesse vertreten und überzeugt Kunden aus Industrie und Wirtschaft von den Vorteilen des bionischen Leichtbaus. (Foto: Paul Bomke)

The industry is currently looking for lightweight reinforcement of complex flat and 3D-components. The AWI researchers have developed and built a holo pyramid that allows them to demonstrate the different procedures to the trade fair visitors.

Life forms that are perfectly adapted to their environment are successful, those with poor adaptation do not survive during the course of evolution. The researchers have embraced this principle: they study the technical principles of animals and plants to derive a lightweight construction principle and to optimise structures.

At the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) the biologists and engineers working on bionic lightweight constructions have specialised in single-celled sea algae such as diatoms. These phytoplankton organisms fascinate the researchers as they have extremely light yet stable silica shells, which are expressed in a wide variety of complex geometric structures.

“We are currently working on a method that automatically reinforces surfaces with a load-oriented honeycomb geometry,” says Dr Christian Hamm, head of the bionic lightweight construction department at the Alfred Wegener Institute about their current research focus.

The automobile and aviation industry currently has a great demand for such particularly tough, rigid and at the same time lightweight structures. The AWI researchers have already successfully collaborated with partners from diverse industries, such as the automotive industry, the healthcare sector, shipbuilders and manufacturers of offshore constructions.

Here, the AWI bionics researchers focus on their patented development method: ELiSE – Evolutionary Light Structure Engineering. The optimal development of a product passes several stages: First, the structures of the 90,000 samples of the Hustedt Diatom Collection and the internal database are investigated to find diverse lightweight principles with a high potential for a technical adaptation. The modes of action behind the function are abstracted into bionic concepts, analysed using computer models and optimised in several stages.

The components optimized with the ELiSE method can be produced with various materials, such as metal or plastics and using different processes such as 3D print, injection moulding and sheet metal construction. The AWI researchers use, for example, additive manufacturing to produce components with a 3D printer. To give the trade fair visitors a vivid impression of the various possibilities offered by their bionic approach to develop new lightweight solutions, the AWI researchers came up with something very special:

They constructed a holo pyramid that visualises the various processes and bionic reinforcement structures as three-dimensional holograms. They have also brought with them components that they printed in their Lab as well as last year's trade fair exhibit (the folding Bionic Bike developed in a 3D print process) to present the full spectrum of exhibits to the visitors.

Seven members of the bionic lightweight construction team of the Alfred Wegener Institute are looking forward to discuss innovative lightweight solutions at Hannover Messe from 25 to 29 April in hall 2, stand A01.

Notes for Editors:

Your scientific contact person at the Alfred Wegener Institute is Dr Christian Hamm, tel. ++49 471 4831-1832 (e-mail: Christian.Hamm(at)awi.de).

Your contact person in the Dept. of Communications and Media Relations is Dr Folke Mehrtens, tel. ++49 471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Bionics at AWI: http://www.awi.de/en/science/special-groups/bionics.html

Please find printable images and a video (German language) in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://elise.de/en/ - ELiSE

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Trade Fair News:

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>