Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Automatic Completeness Check: Optical Measurement Technologies Detect the Smallest of Errors


Thousands of parts, bolts and rivets are mounted on everything from aircraft fuselage shells to turbines. Until now, workers have inspected the correctness of an assembly manually – a tedious job during which errors can be overseen easily. Researchers at the Fraunhofer IFF have developed an automatic inspection system that will take over this job in the future. They will be presenting it at the 2014 Automatica in Munich.

Airliners like the Airbus A380 are custom made and thus hardly different from other capital goods like custom machines or plants. Each airline attaches importance to custom interiors and has its planes modified for its specific needs.

An inspection robot checking the completeness of an aircraft fuselage shell.

Fraunhofer IFF

While one airline wants as many rows of seats as possible accommodated, another places emphasis on comfort and allows passengers somewhat more legroom. The situation is similar for monitors, luggage compartments and ventilation systems for instance. All of these requests entail custom manufacturing with thousands of small parts that always have to be positioned and mounted anew.

This makes assembly and subsequent quality assurance very difficult. Workers get the specifications from paper documents and compare each part with them manually. The number of parts inspected for an aircraft like the A380 is huge. Up to 40,000 rivets hold each of the twenty aircraft fuselage shells together. The correctness of each of the up to 2,500 attached parts has to be checked. Error detection is time-consuming and subsequent correction is sometimes extremely expensive.

Robot Compares Components with CAD Data

In the future, workers will receive support when they are checking for errors. An automatic inspection system reliably detects errors during assembly. Researchers at the Fraunhofer IFF were contracted to develop it by Premium AEROTEC GmbH, a developer and manufacturer of structures and production systems for aircraft. The technology has been field tested in pilot systems that independently inspect every mounted part and joint on aircraft fuselage shells.

The system consists of a robotic arm with a specially developed sensor head attached. Equipped with image sensors and 3D sensors, the head automatically scans every relevant inspected feature - between 1000 and 5000 - on fuselage shells. From any position, it generates absolutely reliable, high resolution measured data on the state of assembly of the real mounted parts.

The system extracts the data it needs from the 3D CAD data on the fuselage shells. These specify the desired result and also contain all of the coordinates of the inspection points. At the same time, the system uses these data to generate virtual measured data of the inspected features - in the form of synthetic images and 3D point clouds. Every joint and every single mounted part is represented exactly in them.

During an inspection, the system overlays the real measured data with the virtual specifications, factoring in image area and camera angle automatically. When both sets of measured data match, i.e. the mapped parts have been mounted correctly, the system marks the parts virtually with green for correct. If it detects discrepancies, they are marked in red. Uncertainties are marked in yellow. Workers can view different evaluations in an inspection report, used interactively much like an app. The system delivers not only photographs to users but also coordinates of components so that inspected parts can be easily located again.

Faster and More Reliable Than Manual Inspection

The digital inspection system is not only more reliable but also significantly faster than manual inspection: The pictures are taken in approximately five seconds; evaluations for each position are performed in another five. Instead of eight to twelve hours, it only takes about three hours to inspect the fit of every part. The system also inspects all sorts of sizes, effortlessly analyzing volumes of up to 11 m x 7 m x 3 m very precisely and with high resolution.

It not only detects errors but also helps eliminate them in the long term. Errors have been proven to occur in some places with greater frequency. Where and why, though? To find out, the detected errors are fed into a database that analyzes whether they simply occur once or recur. This information can then be forwarded to assembly technicians with appropriate instructions.

Fraunhofer researchers will be presenting the systems technology at Automatica in Munich from June 3 to 6, 2014.

Weitere Informationen:

René Maresch | Fraunhofer-Institut
Further information:

Further reports about: Airbus Automatic CAD CAD data Error IFF Optical clouds compartments documents errors planes structures synthetic

More articles from Trade Fair News:

nachricht Development and Fast Analysis of 3D Printed HF Components
19.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Photovoltaics: easy implementation thanks to modern printing techniques
14.03.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>