Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic Completeness Check: Optical Measurement Technologies Detect the Smallest of Errors

05.05.2014

Thousands of parts, bolts and rivets are mounted on everything from aircraft fuselage shells to turbines. Until now, workers have inspected the correctness of an assembly manually – a tedious job during which errors can be overseen easily. Researchers at the Fraunhofer IFF have developed an automatic inspection system that will take over this job in the future. They will be presenting it at the 2014 Automatica in Munich.

Airliners like the Airbus A380 are custom made and thus hardly different from other capital goods like custom machines or plants. Each airline attaches importance to custom interiors and has its planes modified for its specific needs.


An inspection robot checking the completeness of an aircraft fuselage shell.

Fraunhofer IFF

While one airline wants as many rows of seats as possible accommodated, another places emphasis on comfort and allows passengers somewhat more legroom. The situation is similar for monitors, luggage compartments and ventilation systems for instance. All of these requests entail custom manufacturing with thousands of small parts that always have to be positioned and mounted anew.

This makes assembly and subsequent quality assurance very difficult. Workers get the specifications from paper documents and compare each part with them manually. The number of parts inspected for an aircraft like the A380 is huge. Up to 40,000 rivets hold each of the twenty aircraft fuselage shells together. The correctness of each of the up to 2,500 attached parts has to be checked. Error detection is time-consuming and subsequent correction is sometimes extremely expensive.

Robot Compares Components with CAD Data

In the future, workers will receive support when they are checking for errors. An automatic inspection system reliably detects errors during assembly. Researchers at the Fraunhofer IFF were contracted to develop it by Premium AEROTEC GmbH, a developer and manufacturer of structures and production systems for aircraft. The technology has been field tested in pilot systems that independently inspect every mounted part and joint on aircraft fuselage shells.

The system consists of a robotic arm with a specially developed sensor head attached. Equipped with image sensors and 3D sensors, the head automatically scans every relevant inspected feature - between 1000 and 5000 - on fuselage shells. From any position, it generates absolutely reliable, high resolution measured data on the state of assembly of the real mounted parts.

The system extracts the data it needs from the 3D CAD data on the fuselage shells. These specify the desired result and also contain all of the coordinates of the inspection points. At the same time, the system uses these data to generate virtual measured data of the inspected features - in the form of synthetic images and 3D point clouds. Every joint and every single mounted part is represented exactly in them.

During an inspection, the system overlays the real measured data with the virtual specifications, factoring in image area and camera angle automatically. When both sets of measured data match, i.e. the mapped parts have been mounted correctly, the system marks the parts virtually with green for correct. If it detects discrepancies, they are marked in red. Uncertainties are marked in yellow. Workers can view different evaluations in an inspection report, used interactively much like an app. The system delivers not only photographs to users but also coordinates of components so that inspected parts can be easily located again.

Faster and More Reliable Than Manual Inspection

The digital inspection system is not only more reliable but also significantly faster than manual inspection: The pictures are taken in approximately five seconds; evaluations for each position are performed in another five. Instead of eight to twelve hours, it only takes about three hours to inspect the fit of every part. The system also inspects all sorts of sizes, effortlessly analyzing volumes of up to 11 m x 7 m x 3 m very precisely and with high resolution.

It not only detects errors but also helps eliminate them in the long term. Errors have been proven to occur in some places with greater frequency. Where and why, though? To find out, the detected errors are fed into a database that analyzes whether they simply occur once or recur. This information can then be forwarded to assembly technicians with appropriate instructions.

Fraunhofer researchers will be presenting the systems technology at Automatica in Munich from June 3 to 6, 2014.

Weitere Informationen:

http://www.iff.fraunhofer.de/en/press/press-releases/2014/automatic-completeness...
http://www.iff.fraunhofer.de/en/business-units/measurement-testing-technology/op...

René Maresch | Fraunhofer-Institut
Further information:
http://www.iff.fraunhofer.de/en

Further reports about: Airbus Automatic CAD CAD data Error IFF Optical clouds compartments documents errors planes structures synthetic

More articles from Trade Fair News:

nachricht Optatec 2016: Robust glass optical elements for LED lighting
30.05.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Steam sterilizable packaging films with excellent barrier properties
27.05.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>