Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic Completeness Check: Optical Measurement Technologies Detect the Smallest of Errors

05.05.2014

Thousands of parts, bolts and rivets are mounted on everything from aircraft fuselage shells to turbines. Until now, workers have inspected the correctness of an assembly manually – a tedious job during which errors can be overseen easily. Researchers at the Fraunhofer IFF have developed an automatic inspection system that will take over this job in the future. They will be presenting it at the 2014 Automatica in Munich.

Airliners like the Airbus A380 are custom made and thus hardly different from other capital goods like custom machines or plants. Each airline attaches importance to custom interiors and has its planes modified for its specific needs.


An inspection robot checking the completeness of an aircraft fuselage shell.

Fraunhofer IFF

While one airline wants as many rows of seats as possible accommodated, another places emphasis on comfort and allows passengers somewhat more legroom. The situation is similar for monitors, luggage compartments and ventilation systems for instance. All of these requests entail custom manufacturing with thousands of small parts that always have to be positioned and mounted anew.

This makes assembly and subsequent quality assurance very difficult. Workers get the specifications from paper documents and compare each part with them manually. The number of parts inspected for an aircraft like the A380 is huge. Up to 40,000 rivets hold each of the twenty aircraft fuselage shells together. The correctness of each of the up to 2,500 attached parts has to be checked. Error detection is time-consuming and subsequent correction is sometimes extremely expensive.

Robot Compares Components with CAD Data

In the future, workers will receive support when they are checking for errors. An automatic inspection system reliably detects errors during assembly. Researchers at the Fraunhofer IFF were contracted to develop it by Premium AEROTEC GmbH, a developer and manufacturer of structures and production systems for aircraft. The technology has been field tested in pilot systems that independently inspect every mounted part and joint on aircraft fuselage shells.

The system consists of a robotic arm with a specially developed sensor head attached. Equipped with image sensors and 3D sensors, the head automatically scans every relevant inspected feature - between 1000 and 5000 - on fuselage shells. From any position, it generates absolutely reliable, high resolution measured data on the state of assembly of the real mounted parts.

The system extracts the data it needs from the 3D CAD data on the fuselage shells. These specify the desired result and also contain all of the coordinates of the inspection points. At the same time, the system uses these data to generate virtual measured data of the inspected features - in the form of synthetic images and 3D point clouds. Every joint and every single mounted part is represented exactly in them.

During an inspection, the system overlays the real measured data with the virtual specifications, factoring in image area and camera angle automatically. When both sets of measured data match, i.e. the mapped parts have been mounted correctly, the system marks the parts virtually with green for correct. If it detects discrepancies, they are marked in red. Uncertainties are marked in yellow. Workers can view different evaluations in an inspection report, used interactively much like an app. The system delivers not only photographs to users but also coordinates of components so that inspected parts can be easily located again.

Faster and More Reliable Than Manual Inspection

The digital inspection system is not only more reliable but also significantly faster than manual inspection: The pictures are taken in approximately five seconds; evaluations for each position are performed in another five. Instead of eight to twelve hours, it only takes about three hours to inspect the fit of every part. The system also inspects all sorts of sizes, effortlessly analyzing volumes of up to 11 m x 7 m x 3 m very precisely and with high resolution.

It not only detects errors but also helps eliminate them in the long term. Errors have been proven to occur in some places with greater frequency. Where and why, though? To find out, the detected errors are fed into a database that analyzes whether they simply occur once or recur. This information can then be forwarded to assembly technicians with appropriate instructions.

Fraunhofer researchers will be presenting the systems technology at Automatica in Munich from June 3 to 6, 2014.

Weitere Informationen:

http://www.iff.fraunhofer.de/en/press/press-releases/2014/automatic-completeness...
http://www.iff.fraunhofer.de/en/business-units/measurement-testing-technology/op...

René Maresch | Fraunhofer-Institut
Further information:
http://www.iff.fraunhofer.de/en

Further reports about: Airbus Automatic CAD CAD data Error IFF Optical clouds compartments documents errors planes structures synthetic

More articles from Trade Fair News:

nachricht Lasers are the key to mastering challenges in lightweight construction
29.05.2015 | Fraunhofer-Institut für Lasertechnik ILT

nachricht We will find “the fly in the ointment” and show it to you
20.05.2015 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>