Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ACHEMA 2012 - Compact and flexible thermal storage

01.06.2012
Biogas plants, combined heat and power plants don’t just generate electricity, they also produce heat. However, unlike the electricity they yield, the heat generally dissipates unused. A new technology is set to change this: It will allow the heat to be stored lossfree in the smallest of spaces for lengthy periods of time, for use as and when required.

There’s a growing trend towards generating electricity from biogas. But these systems would be considerably more effective if better use could be made of the heat that is produced in the process.


These zeolite pellets can bind steam within their pores, generating heat. © Fraunhofer IGB

Roughly half of the total energy content of the fuel is released as heat, which typically dissipates into the atmosphere unused. Large quantities of heat likewise escape from combined heat and power plants, not to mention many industrial installations. The root of the problem lies in the fact that the heat is not generally used at the time it is generated – and options for storing it are limited.

Traditionally, water tanks have been used for this purpose, but they can only absorb a finite quantity of heat. And of course, the heat can only be stored for short periods of time, because although the water tanks are insulated, the water gradually loses its heat to the surrounding atmosphere.

Working together with industrial partners such as ZeoSys GmbH in Berlin, scientists from the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart are currently developing a new type of thermal storage system. This new system can store three to four times the amount of heat that water can, so it only requires storage containers around a quarter the size of water tanks. Moreover, it is able to store the heat loss-free over lengthy periods of time and can even operate at temperatures well in excess of 100 degrees Celsius.

The new system contains zeolite pellets, from the Greek zeô, meaning ‘boil’ and lithos, meaning ‘stone’. Normally this material is used as an ion exchanger, for example to soften water. Because zeolites are porous, they have a huge surface area: A single gram of these pellets boasts a surface area of up to 1000 square meters. When the material comes into contact with water vapor, it binds the steam within its pores by means of a physicochemical reaction, which generates heat.

The water is in reverse removed from the material by the application of heat and the energy is stored, but not as a result of the material becoming palpably warm – as when water tanks are used. What is stored is the potential to adsorb water and in the process release heat; the term ‘sorptive thermal storage’ is frequently used to describe these systems. And provided the dried zeolite material is prevented from coming into contact with water, it can store the heat for an unlimited amount of time.

Mobile test facility with a storage volume of 750 liters

Although the basic principle has been widely understood for some time, it had never before been translated into a broad-based technical application for storage systems. “We took the principle and confirmed it was technically feasible,” says Mike Blicker, group manager, heat and sorption systems in the IGB. Initially, the researchers used a 1.5- and then a 15-liter reactor to demonstrate that the process really does work. Blicker explains: “First we developed the process engineering, then we looked around to see how we could physically implement the thermal storage principle – i.e. how a storage device has to be constructed, and at which locations heat exchangers, pumps and valves are needed.”

The institute’s development partners were responsible for the material testing side of the project, investigating which of the various zeolites would be best suited for the purpose, how big the zeolite pellets needed to be, and whether or not the material would remain stable even after numerous storage cycles.

They proved that heat could be stored and discharged many thousands of times without the system showing significant signs of wear and tear. The researchers subsequently up-scaled their operations to the current test facility, which has a storage volume of 750 liters and is mounted in a transportable container, along with all the additional equipment it requires. Its mobility allows the scientists to test the system in a variety of locations under realistic conditions.

The next stage of their work will be to reduce production costs, further optimize the system and adapt it for a variety of applications. Ultimately, the goal is to be able to store heat both in industrial installations and in small combined heat and power plants such as those used in larger residential buildings. To start with, priority will be given to industrial applications.

“It would be ideal if we were able to devise a modular system that would allow us to construct each storage device to suit the individual requirement,” says Blicker. The Fraunhofer researchers will be using a model system to demonstrate the principles of sorptive thermal storage at ACHEMA 2012 in Frankfurt from June 18 through 22 (Hall 9.2, Booth D64).

Mike Blicker | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/june/compact-and-flexible-thermal-storage.html

More articles from Trade Fair News:

nachricht Paradigm shift in Paris: Encouraging an holistic view of laser machining
10.01.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>