Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A medical lab for the home

04.11.2014

Fraunhofer FIT demonstrates a mobile wireless system that monitors the health of elderly people in their own homes, using miniature sensors. Besides non-invasive sensors this platform integrates technology to take a blood sample and to determine specific markers in the patient's blood. At its core is the home unit, a compact device located in the patient's home. It incorporates the necessary software as well as sensors and the analytical equipment. Visit us at MEDICA, November 12 – 15, 2014, Hall 10, booth G05.

For years, cardiac diseases have been the most important cause of death globally. Mobile assistance systems that monitor vital parameters, e.g. blood pressure or heart rate, of risk patients in their homes could make their lives safer and more satisfying. A platform supporting this kind was developed and tested by researchers from Fraunhofer FIT, the Berlin Charité, T-Systems and several international partners.


Microchip for the electrochemical detection of markers.

© Fraunhofer FIT


Fluorescence sensor.

© Fraunhofer FIT

Besides non-invasive sensors this platform integrates technology to take a blood sample and to determine specific markers in the patient's blood while the patient is at home. At its core is the home unit, a compact device located in the patient's home.

It incorporates the necessary software as well as sensors and the analytical equipment. Wearable sensors for measuring vital parameters can be linked to the home unit, e.g. a pulse oximeter with a Bluetooth module in the patient's ear or a blood pressure monitor that sends its data to the system via WLAN.

Using a nanopotentiostat, an electrochemical sensor, the system can measure the patient's glucose, lactate or cholesterol level. In addition, a fluorescence sensor using a laser diode captures the concentration of several cardiac markers.

To detect the risk-indicating markers in the blood, the patient uses a cartridge that she fills with a drop of blood from a prick in her finger. The cartridge is equipped with a microchip and also specially designed, so that the markers in the blood can be detected.

"Miniaturized sensors in the home unit, which can detect traces of the markers down to the nano level, analyze the blood sample", says Professor Harald Mathis, head of the department 'Biomolecular Optical Systems' of the Fraunhofer Institute for Applied Information Technology FIT.

The home unit aggregates the sensor data and sends the results to the patient's doctor or a medical center via secure Internet connection. A smartphone app presents the health data and the physician's feedback to the patient.

The system was developed by Fraunhofer FIT in cooperation with Charité and T-Systems Deutschland in the BMBF/EU-funded project Nanoelectronics for Mobile AAL Systems – MAS.

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>