Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transarterial VSV oncolytic therapy for hepatocellular carcinoma

17.11.2011
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, with the majority of clinical cases arising as a result of the wound-healing response to chronic liver injury known as hepatic fibrosis. If left untreated, the condition progresses to the state of cirrhosis with severe complications of end-stage liver disease including HCC. When HCC arises under these conditions, it presents a major clinical challenge for treatment of the cancer as well as the underlying liver disease.

<br> Based on the results of early clinical trials, oncolytic virotherapy holds promise as a safe and effective treatment strategy for advanced HCC. It has been demonstrated that recombinant vesicular stomatitis virus (VSV) vectors are particularly attractive oncolytic agents for the treatment of HCC, resulting in significant tumor responses and subsequent prolongation of survival. <br> Over the last 25 years, much progress has been made in understanding the mechanism of liver fibrogenesis, and as a result, it is now believed that fibrosis and cirrhosis are reversible processes. Despite this growing body of evidence, the clinical management of cirrhosis has fallen behind, and the success of available therapies has yet to be demonstrated. The challenge for a successful and safe antifibrotic therapy is specific targeting of the responsible cell types involved in fibrotic progression, without the introduction of collateral toxicities. In a preclinical rodent model of HCC with underlying fibrosis it could be shown that VSV administered by hepatic arterial infusion does not only maintain its ability to efficiently and selectively kill tumor cells, but it also possesses antifibrotic properties which provides the unique benefit in concomitant reversal of fibrotic progression with a single agent. Therefore, this innovation represents a significant therapeutic advantage over the current state of the art.



Further Information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2211&lang=en
http://www.technologieallianz.de

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>