Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermomorphic Enzyme Recycling - One-phase process engineering and two-phase separation by temperature control

29.10.2010
Biocatalysts are playing an ever increasing role in economical and sustainable processes. A well-known example is the production of acrylamide by Mitsubishi Rayon which illustrates the advantages over the traditional chemical routes. However, only a few processes are known, in which the biocatalyst can be economically separated and re-used without loss of activity until now.

Well-established methods to obtain biocatalysts for re-use are e.g. the immobilization via adsorption onto suitable support materials, encapsulation in aqueous gels or cross-linked enzyme aggregates. All these recycling methods suffer from leaching of the enzyme and often from a substantial loss in activity. Laborious modifications of the enzyme are partly essential or highly-priced apparatus for efficient separation needs to be implemented. Another method is the usage of a liquid-liquid two-phase system, consisting of an aqueous medium and a water-immiscible organic solvent. But mass transfer limitations between the two immiscible phases are hardly narrowing the economically possible field of applications.

In the present invention, mass transfer limitations even with very non-polar compounds do not occur because a temperature-dependent miscibility gap of the selected solvent compounds is used. The reaction is carried out under monophasic conditions and cooling down leads to a biphasic system in which the catalyst phase can be simply separated from the product phase and used again. Thermomorphic Enzyme Recycling is an absolutely easy controllable process over a wide range of temperatures, solvent mixtures and operating conditions.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2178&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Flexible and rigid, heavy-metal free organic redox polymer batteries
09.03.2017 | TechnologieAllianz e.V.

nachricht Quat primer polymers – the universal key to permanent surface functionalization
27.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>