T7-O-me-RNA-Polymerase – Tailored Polymerase for efficient synthesis of stable RNA

RNA is increasingly being used as a tool in a broad range of applications, e.g. as aptamers, in particular as an active agent in innovative therapeutic approaches.

However, these applications require the modification of RNA which otherwise shows poor resistance to cellular nucleases. To this end, typically the ribose 2´-hydroxyl moieties are substituted by O-methyl groups. This step is hampered by the fact that wild-type RNA-Polymerase is inefficient in incorporating modified nucleotides. Although mutant enzymes have been engineered which are able to insert some or even all 2´-O-me-modified nucleotides, none of the enzymes present so far is able to synthesize transcripts of sufficient lengths. By an in-depth analysis of the T7-RNA-Polymerase and protein engineering, the inventors were able to create a variant which is both a generalist polymerase capable of incorporating all 2´-O-me-modified nucleotides as well as synthesizing fully modified RNA of up to approx. 1,000 nucleotides. Commercial Opportunity The inventive enzyme is broadly applicable in molecular and cellular biology both in academia and in industry. Furthermore, the inventive enzyme is a key tool for developing novel RNA-based therapeutic approaches.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors