Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superparamagnetic Iron Oxide Nanoparticles

14.11.2012
<strong>Background</strong><br>

Iron oxide nanoparticles are described for usage in therapeutic hyperthermia as well as for magnetic particle imaging and spectroscopy (MPI, MPS). Application of those particles in hyperthermia therapy (injection into tumor cells and exposure to an alternating magnetic field to damage tumor cells) is well known whereas MPI is a quite new tomographic imaging technique based on the non-linear magnetization behavior of superparamagnetic iron oxide nanoparticles (SPIOs). So far it is clear that MPI will have potential for many different diagnostic applications but it is still lacking appropriate SPIO tracers to achieve and guarantee the best possible image quality.<br><br> <strong>Technology</strong><br> The newly synthesized SPIO tracer for MPI according to this invention are assumed to have properties that guarantee a very well image quality and moreover enable them to be used in various biological systems and therewith in preclinical and clinical development. The SPIOs are provided as magnetic particle dispersion comprising single- or multi-core nanoparticles of iron oxides like magnetite and/or maghemite. For in vivo applications and stabilization the particles are coated with a biocompatible shell, preferably a polymer. In first experiments the dispersions showed an improved nonlinear magnetization behavior and a distinctive overtone structure that are clearly superior to SPIOs known in the state of the art so far. Moreover these SPIOs show improved heating properties when subjected to an alternating magnetic field. The proposed SPIO dispersions are suitable for applications in MPI, MRS, MRI, hyperthermia therapy, cell tracking and diagnosis of tumors, cardiovascular-, bone marrow-, lymph node- or liver diseases. <br> <br>

<strong>Benefits</strong><br> <ul> <li>Enhanced nonlinear magnetization behavior</li> <li>Distinctive overtone structure</li> <li>Improved heating properties</li> <li>Well-functioning contrast agent for MPI </li> </ul><br> <strong>IP Rights</strong><br> EP and US patent application ( Feb. 2012) <br> <br> <strong>Origin</strong><br> Charité-Universitätsmedizin Berlin<br> Physikalisch-Technische Bundesanstalt </p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2976&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht IAP - Intrinsic Antimicrobial Polymers
28.04.2016 | TechnologieAllianz e.V.

nachricht Metallized open-cell foams and fibrous substrates
28.04.2016 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

Rapid adaptation to a changing environment

28.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>