Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly specific DNA-interacting enzymes with programmable specificity

13.12.2006
Different enzyme families are used in vitro and in vivo for the manipulation of DNA. Restriction endonucleases, exonucleases, DNAseI, DNA repair enzymes and DNA methyltransferases, amongst others, belong to these enzyme families. However, the targeted and exclusive addressing of specific individual genes using these enzymes has not been possible, because the recognition site of the enzyme occurs severalfold in the target DNA.

The invention presented here produces, on the contrary, enzyme conjugates, which specifically interact with target DNA: It also provides methods for manufacturing these enzyme conjugates. Using a linker, enzymes are covalently bonded to enzyme conjugates with a specificity anchor. Here the specificity anchor refers to, for example, oligonucleotide derivatives or peptide nucleic acids that, adjacent to the recognition site for the enzyme residue, are characterised by a triplex forming site (TFS) on the target DNA, whereby the specificity anchor and the linker determine in which position on the target DNA and in which distance to the enzyme residue the triplex formation between the TFS of the target DNA and the triplex forming specificity anchor of the conjugate takes place. As a result, the specificity of a enzyme conjugate according to the current invention can be ?programmed? so that ideally only one single recognition site exists on the target DNA for the enzyme conjugate. Even if the recognition site for the conjugate appears more than once, the number of positions in which the target DNA binds with the conjugate is significantly smaller than the number of recognition sites for the unconjugated enzyme.

Further Information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=0827&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>