Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly specific DNA-interacting enzymes with programmable specificity

13.12.2006
Different enzyme families are used in vitro and in vivo for the manipulation of DNA. Restriction endonucleases, exonucleases, DNAseI, DNA repair enzymes and DNA methyltransferases, amongst others, belong to these enzyme families. However, the targeted and exclusive addressing of specific individual genes using these enzymes has not been possible, because the recognition site of the enzyme occurs severalfold in the target DNA.

The invention presented here produces, on the contrary, enzyme conjugates, which specifically interact with target DNA: It also provides methods for manufacturing these enzyme conjugates. Using a linker, enzymes are covalently bonded to enzyme conjugates with a specificity anchor. Here the specificity anchor refers to, for example, oligonucleotide derivatives or peptide nucleic acids that, adjacent to the recognition site for the enzyme residue, are characterised by a triplex forming site (TFS) on the target DNA, whereby the specificity anchor and the linker determine in which position on the target DNA and in which distance to the enzyme residue the triplex formation between the TFS of the target DNA and the triplex forming specificity anchor of the conjugate takes place. As a result, the specificity of a enzyme conjugate according to the current invention can be ?programmed? so that ideally only one single recognition site exists on the target DNA for the enzyme conjugate. Even if the recognition site for the conjugate appears more than once, the number of positions in which the target DNA binds with the conjugate is significantly smaller than the number of recognition sites for the unconjugated enzyme.

Further Information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=0827&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>