Copper-oxygen adduct complexes

The new copper-oxygen adduct complexes according to the present invention are thermally stable at room temperature (and above), for the first time, as well as in oxygen-containing atmosphere, i.e. stable as a solid and suitable for being used as oxidation catalysts especially in industrial chemistry, for instance for the oxidation of benzene to phenol or of methane to methanol, for the oxidation of hydrogen, aromatic and aliphatic, saturated and unsaturated hydrocarbons as well as alcohols and amines.<p>

The possibility of using monovalent copper complexes with tripodal tetradentate ligands as an oxidising agent is definitely known by the state of the art. These are, however, thermally instable due to their oxygen sensitivity (i.e. they can only be conserved for a short time at temperatures significantly inferior to 0°C) and, thus, only usable in a restricted manner as oxidation catalysts. The invention at hand overcomes this disadvantage in the state of the art first by complexing a tripodal tetradentate ligand with a Cu-(I) compound and then by replacing the anion of this complex with a tetraarylborate and finally by exposing the [Cu-L]-tetraarylborate complex to a oxygen-containing atmosphere. This last reaction step is also suitable for being used in detecting oxygen.<p> These oxidation methods can be transferred by the invention at hand from laboratory scale to a industrial application: The copper-(II)-oxygen adduct complexes according to the present invention are, for instance, suitable for being deposited as reactive components in mesoporous phases such as molecular sieves or on zeolites or polystyrenes.

Further Information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors