Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein for the chemoenzymatic production of L-<i>threo</i>-hydroxyaspartate

26.06.2007

The invention at hand provides a novel protein for the chemoenzymatic and enantiomerically pure production of L-&lt;i&gt;threo&lt;/i&gt;-hydroxyaspartate from L-aspartate.&lt;p&gt; The naturally occurring protein AsnO (asparagine oxygenase) is part of the CDA biosynthesis gene cluster in Streptomyces coelicor. AsnO is an Fe&lt;sup&gt;2+&lt;/sup&gt; and &lt;font face="symbol"&gt;a&lt;/font&gt;-ketoglutarate-dependent hydroxylase. This hydroxylase acts as a building block for non-ribosomally produced CDA (?Calcium-dependent antibiotic?) in vivo. During the catalytic cycle, this class of enzymes couples the oxidative decomposition of &lt;font face="symbol"&gt;a&lt;/font&gt;-ketoglutarate to succinate and CO&lt;sub&gt;2&lt;/sub&gt; with the hydroxylation of the substrate (L-asparagine).&lt;p&gt; In the wild type of AsnO, the side chain of the amino acid residue Asp-241 thereby binds to the NH&lt;sub&gt;2&lt;/sub&gt; group of the carboxamide group of L-Asn. Surprisingly, it was found that directed mutagenesis of Asp-241 to Asn-241 (D241N) results in a binding site for the carboxyl group of an aspartate side chain. By means of this directed mutagenesis, the substrate specificity changes from asparagine to aspartate, and the mutated protein converts aspartate chemoenzymatically to L-threo-hydroxyaspartate in the presence of Fe2+ and a-ketoglutarate.&lt;p&gt; Thereby, AsnO D241N represents the mutant of the wild type AsnO according to the present invention.

Further information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=01045&lang=en
http://www.technologieallianz.de/

More articles from Technology Offerings:

nachricht Parenteral controlled drug delivery - polymers
10.02.2017 | TechnologieAllianz e.V.

nachricht Parenteral controlled drug delivery - oleogels
10.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>