Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“PCGP” - Polymer-Conjugate Technology for the Rapid Chemoenzymatic Synthesis of Glycopeptides

06.03.2012
Glycosylation is known to play a key role in numerous biological and biochemical functions such as, e.g. protein folding, cell-cell communication, cellular differentiation, cell-matrix interaction and viral invasion. Moreover, the glycosylation pattern of a peptide may have a great impact on the immunogenicity and the proteolytic stability of said peptide. A glycopeptide itself and/or a carbohydrate moiety cleaved off said glycopeptide may serve as an epitope.

So far, glycopeptides are mostly obtained from natural sources. However, purification of said peptides is highly challenging and laborious. The glycopeptides found in nature are mostly proteins of more than 100 amino acids in length, often comprising more than one glycosylation site(s) and their glycosylation pattern cannot be fully controlled. Therefore, there is still the need for efficient methods for producing glycopeptides by synthetical means. Currently, there are two common strategies for the chemical synthesis of glycopeptides known in the art. According to the first strategy, a peptide strand is synthesized and, during the synthesis of said peptide, one or more glycosylated amino acid building block(s) are integrated in the sequence instead of standard amino acids. According to the second strategy, a peptide is first fully synthesized, then, subsequently, one or more protecting groups are cleaved off selectively and the carbohydrate building block is conjugated to the peptide. Both strategies bear several severe drawbacks. The present invention relates to a method for the production of glycosylated peptides conjugated with one or more hydrophilic polymer(s) and glycosylating the polymer-conjugated peptide by means of one or more glycosyltransferase(s).

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2656&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>