Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

noCap - AC Operable Class-D Amplifier

11.02.2011
Related Art - Basically a Class D power amplifier compares an input voltage with a saw tooth reference. The comparison yields a pulse series with a duty cycle proportional to the present input voltage. A pair of solid state switches (e. g. MOSFETs, IGBTs) is driven by the pulse signals; the output of the power stage commonly is low pass filtered in order to eliminate the high frequency parts of the signal due to the reference.

The solid state switches are energized by a power supply comprising capacitors. A persistent challenge is the rating of these power supply capacitors: Especially for low frequency output signals down to DC the flyback energy due to the inductive components of low pass filter and load can charge the power supply capacitors up to voltages much greater than specified. To overcome rating problems the power supply capacitors are sometimes shunted by zener diodes. However, besides the additional circuitry efforts this measure causes additional heat losses. Thus, a more consequent solution would be desirable. Invention - Such a solution was recently developed at the Faculty of Process Engineering, Energy and Mechanical Systems at Cologne University of Applied Sciences. The innovative noCap technology not longer relies on power supply capacitors. The output stage switches moreover are immediately energized by an AC supply. With its novel power stage control method noCap maintains the outstanding power efficiency known from other Class-D designs.

Beyond that there is neither a need for commonly utilized power supply capacitors, nor for a separate power supply at all: noCap quasi comprises its own switching power supply. Therefore a considerable gain in circuit package density can be achieved.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2261&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Parenteral controlled drug delivery - polymers
10.02.2017 | TechnologieAllianz e.V.

nachricht Parenteral controlled drug delivery - oleogels
10.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>