Manipulation of the growth of living cells via cell-surface-interaction

Scientists of Saarland University have developed a setup, which allows a controlled manipulation of cells via cell‐surface‐interaction. Therefore biocompatible magnetic nanoparticles are functionalized with biomolecules, which in turn are able to bind specific cell types. These particles are immobilized on a magnetic substrate as well and the complex can be placed in any kind of cell culture vessel. Influenced by external magnetic fields, domain structures are formed by the complex. These domains can be changed at any time during cell cultivation through external fields as the immobilized particles follow those changes due to their magnetic interaction. The setup is computer‐controlled and allows to observe the cell behaviour over several days. Moreover a direct reaction to this is possible by manipulating the domain structure via external magnetic fields.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Hauke Studier, Dr. Susanne Heiligenstein

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors