Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jaw Positioning Device - Precise midface-related maxilla repositioning during orthognathic surgery

11.04.2013
Occlusion irregularities can surgically be treated by corrective osteotomies of mandible and / or maxilla. However, exact midface-related repositioning of the maxilla after LeFort I Osteotomy remains challenging, as the mobilised parts of the jaw are free to move three-dimensionally. Previous approaches are all afflicted with considerable inaccuracy and some of them are associated with additional radiation exposure caused by three-dimensional imaging.

This invention allows exact midface-related maxilla repositioning during mono- or bimaxillary surgery. The jaw positioning device comprises three splints (primary-, secondary- and reference splint) and three connection bars. The maxillary shift is planned preoperatively by model-surgery and encoded by the difference between primary- and secondary splint. There is no need for navigational systems or complex bone models based on three-dimensional imaging. During surgery, the primary splint, which fits exactly to the occlusional surfaces of the maxillary teeth, is placed on the dental arch. The primary splint’s outer face features a definded surface profile, on which the reference splint is placed. In the next step, connection bars to three intraorally accessible points of the patient’s bony midface are fixed on the reference splint. In this way, the reference splint can be replaced exactly in a well-defined midface-related position, also without the primary splint. After LeFort I osteotomy, the maxilla can be precisely positioned at the target position by use of the secondary splint, that also fits exactly to the corresponding surface of the reference splint.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2534&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>