Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injection of Spin-polarized Electrons into Semiconductors for Spintronic Applications

12.12.2012
<p><strong>Background</strong><br>

The spin of charge carriers can serve as an information medium with faster components having much shorter switching times. Spin electronics or spintronics represents information by the orientation of the electron spin. To build a spin transistor it is necessary to inject spin-polarized electrons into classical semiconductors. Conventional methods for creating spin-polarized electrons involve polarization of spin created by ferromagnetic materials. </p> <p><strong>Technology</strong><br> This technology enables the injection of spin-polarized electrons into semiconductors at room temperature. This permits the production of spin-polarized materials that offer a highly efficient transition of the spin-polarized electrons. For ferromagnetic semiconductors such as Europium (II) sulfide (EuS) a high spin polarization exists at temperatures above room temperature if the ferromagnetic semiconductor interacts with additional free charge carriers. This spin-polarized ferromagnetic semiconductor is able to inject spin-polarization into a traditional (non-magnetic) semiconductor like GaAs or Si. The spin-polarized material consists therefore of multiple semiconducting and ferromagnetic semiconducting layers. Since the spin-polarized material works at room temperature extreme cooling is not required.</p>

<p><strong>Benefits</strong><br> <ul> <li>Highly spin-polarized material</li> <li>Enables spin-polarization in GaAs and Si without cooling</li> <li>Room temperature operation </li> </ul> <p><strong>IP Rights</strong><br> European patent EP1388898 B1 validated in Germany<br> US patent US6,949,778B2 </p> <p><strong>Origin</strong><br> Freie Universität Berlin, Germany</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2766&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Device and process for the agglomeration of colloids
29.07.2015 | TechnologieAllianz e.V.

nachricht Method for rapid optimization of FEBID/FIBID processes
29.07.2015 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>