Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive Enhancement of High-Resolution 3-D Fluorescence Microscopy: FAM Fluorescence Activation Microscopy

09.07.2013
Optical setups using two opposing micro-objectives have been propagated to enhance the axial resolution in 3-dimensional fluorescence microscopy using various illumination schemes. However, the coherent superposition of two counter propagating beams creates imaging artifacts, i.e. more or less pronounced side-maxima, which can only be effectively removed by arithmetic op-erations if their intensity is less than 50% of the main maximum.

Fluorescence Activation Microscopy (FAM) is a new alternative 3D fluorescence image technique besides the existing confocal or 2-photon excita-tion microscopy. In FAM, photo activatable dyes are used, so that improved axial resolution is achieved solely by the illumination beams in very much the same way than in 2-photon excitation and in contrast to the regular confocal case. In FAM, however, it is not relevant whether point, line or other structured illumination patterns are used as long as activation and excitation are applied simultaneously, permitting the use of devices such as micro lens arrays, birefringent devices, SLMs, LCD or DMD projectors, LED arrays, holographic pattern generators etc, so FAM enables optical sectioning without necessarily requiring confocal optics or 2-photon excitation. Together with fluorescent proteins such as DRONPA fast 3d life cell imaging also becomes possible. Calculated point spread functions (PSF) suggest that this method may perfect other high resolution imaging techniques such as 4Pi, STED and PALM additionally by introducing an axial resolution in the 70nm range.

Further Information: PDF

DKFZ (German Cancer Research Center, Deutsches Krebsforschungszentrum)
Phone: +49-6221-42 2955

Contact
Dr. Ruth Herzog

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=3231&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>