Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly sensitive Bridge-Assay for Measuring Insulin- and IGF1-Receptor Autoantibodies

12.07.2012
<strong>Background</strong><br>

Autoantibodies (autoAB) against the insulin receptor (IR) are known to cause a rare form of diabetes, i.e. insulin resistance type B. AutoAB against the structurally and functionally related receptor for insulin-like growth factor-1 (IGF1R) have only recently been described and are implicated in autoimmune diseases. However, the prevalence and clinical importance of these autoAB are not yet fully understood as respective sensitive and non-radioactive test systems for routine use were missing. A reliable assay system for the detection and quantification of these autoAB should be met with highest interest by basic researchers and clinicians alike, especially in the fields of diabetes, growth and cancer research, given the central importance of the insulin and IGF1 hormone axes for controlling growth, glucose metabolism and cell proliferation in humans.<br><br> <strong>Technology</strong><br> Two novel non-radioactive and highly sensitive immunoassays for detection and quantification of autoAB against the IR and IGF1R have been developed. For reasons of sensitivity, specificity and automation, the bridge technology has been chosen as most suitable assay format (see scheme). Using these novel in vitro diagnostica, autoAB against the IR and the IGF1R are detected with an astonishing 10% prevalence in the adult population. Notably, a high proportion of cross-reacting autoAB are found, reacting with similar strength to both the IR and IGF1R. The clinical and diagnostic importance of these results remains to be established in ongoing studies.<br><br>

<strong>Benefits</strong><br> <ul> <li>Novel non-radioactive IVD for insulin- and IGF1R autoAB detection <li>Improved differential diagnosis of diabetes or autoimmune diseases <li>Automatable bridge-assay technology of excellent precision <li>Applicable for drug screening affecting growth, diabetes or cancer</ul><br> <strong>IP Rights</strong><br> European patent application (02/2012)<br><br> <strong>Patent Owner</strong><br> Charité-Universitätsmedizin Berlin Ici immunointelligence GmbH

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2774&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>