Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Bioethanol Production in Yeast

11.07.2012

Technology

Novel genetic engineered yeast strains (Saccharomyces cerevisae) have been established that produce increased ethanol yield while simultaneously reduce the production of the unwanted by-product glycerol. It is a strong industrial interest to reduce the glycerol formation during glucose catabolism and thereby increasing ethanol yield, also because glycerol disturbs the distillation process. Past approaches to reduce glycerol formation based e.g. on the deletion of either one or the two genes gpd1 and gpd2 of glycerol-3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme in the glycerol formation pathway of the yeast Saccharomyces cerevisae. These isoenzymes play also a crucial role in osmoregulation and redox balance. While single deletion of either gpd1 or gpd2 does not noticeble decrease glycerol production, the gpd1∆gpd2∆ double deletion strain produces no glycerol, however with the negative side effect that growth and ethanol production is abolished under anaerobic conditions and strongly reduced under aerobic conditions.<br><br> In the novel genetic engineering approaches, a) the Gpd1 enzyme activity is only partly reduced in a gpd2∆-deleted CEN-PK113 yeast strain background by replacing the strong natural gpd1 promotor by a weak TEF1 promotor mutant or b) both enzyme activities of GPD1 and GPD2 are partly reduced. The strains with reduced GPD1 and GPD2 activity show an increase in ethanol production by 2-5% and a reduction in glycerol formation by 61-88% compared to wild type and a slight better growth rate than the TEFmut:GPD1 gpd2∆-strain (ethanol increase: 6,3%; glycerol formation reduction by 64%).

Benefits:

  • Increased ethanol yield and reduced glycerol production
  • Biomass and osmotolerance are not negatively influenced
  • Strains are able to completely ferment the sugars under quasi-anaerobic conditions (minimal medium or liquefied wheat mash)
  • Tolerate high ethanol concentration up to 90 g per liter

IP Rights

  • EP Application (10/2008)
  • Brazil Patent Application (10/2008)
  • US Patent Application (10/2008)
  • Priority Date: 10/2007

Patent Owner

The technology was developed at the Technische Universität Berlin. 


Weitere Informationen: PDF

ipal GmbH
Tel.: +49 (0)30/2125-4820

Ansprechpartner
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=1224&lang=de
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>