Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Bioethanol Production in Yeast

11.07.2012

Technology

Novel genetic engineered yeast strains (Saccharomyces cerevisae) have been established that produce increased ethanol yield while simultaneously reduce the production of the unwanted by-product glycerol. It is a strong industrial interest to reduce the glycerol formation during glucose catabolism and thereby increasing ethanol yield, also because glycerol disturbs the distillation process. Past approaches to reduce glycerol formation based e.g. on the deletion of either one or the two genes gpd1 and gpd2 of glycerol-3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme in the glycerol formation pathway of the yeast Saccharomyces cerevisae. These isoenzymes play also a crucial role in osmoregulation and redox balance. While single deletion of either gpd1 or gpd2 does not noticeble decrease glycerol production, the gpd1∆gpd2∆ double deletion strain produces no glycerol, however with the negative side effect that growth and ethanol production is abolished under anaerobic conditions and strongly reduced under aerobic conditions.<br><br> In the novel genetic engineering approaches, a) the Gpd1 enzyme activity is only partly reduced in a gpd2∆-deleted CEN-PK113 yeast strain background by replacing the strong natural gpd1 promotor by a weak TEF1 promotor mutant or b) both enzyme activities of GPD1 and GPD2 are partly reduced. The strains with reduced GPD1 and GPD2 activity show an increase in ethanol production by 2-5% and a reduction in glycerol formation by 61-88% compared to wild type and a slight better growth rate than the TEFmut:GPD1 gpd2∆-strain (ethanol increase: 6,3%; glycerol formation reduction by 64%).

Benefits:

  • Increased ethanol yield and reduced glycerol production
  • Biomass and osmotolerance are not negatively influenced
  • Strains are able to completely ferment the sugars under quasi-anaerobic conditions (minimal medium or liquefied wheat mash)
  • Tolerate high ethanol concentration up to 90 g per liter

IP Rights

  • EP Application (10/2008)
  • Brazil Patent Application (10/2008)
  • US Patent Application (10/2008)
  • Priority Date: 10/2007

Patent Owner

The technology was developed at the Technische Universität Berlin. 


Weitere Informationen: PDF

ipal GmbH
Tel.: +49 (0)30/2125-4820

Ansprechpartner
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=1224&lang=de
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>