Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cytokinin Receptor Antagonists and Compositions Containing these Derivatives


Cytokinins are plant hormones involved in cell division, shoot meristem and leaf formation, chloroplast biogenesis, and senescence. The development of agonists and antagonists with a particular physiological effect is useful in mechanism-of-action studies of biologically active natural products. The potent naturally occurring cytokinin N6-isopentenyladenine served as the basis for initial structure-activity studies.</p> <p><!--break--><strong>Technology</strong><br> We offer substituted 6-(alkylbenzylamino)-purin derivatives as cytokinin receptor antagonists to provide cytokinin analogons for growth regulation in plants and to offer the possibility for a specific selectivity for cytokinin receptors without being toxic for animal cells. The derivatives can be used to influence morphology, leading to:</p> <ul> <li>Increased root growth, fruit or grain size</li>

<li>Stimulation of root branching and enhanced number of lateral roots</li> <li>Accelerated seed germination</li> <li>Enhanced yield and quality of crops</li> </ul> <br> <b>Benefits:</b><br><ul> <li>Non toxic for animal cells</li> <li>Efficiency is proven in various test systems</li> <li>Suitable regulator for proliferation and morphogenesis in tissue culture</li> </ul><br> </strong><strong>IP Rights</strong><br> Czech Patent Application was filed in 2007<br> PCT Patent Application was filed in 2008<br> National applications filed in USA and Europe</p> <p><strong>Patent Owner</strong><br> <ul> <li>Freie Universität Berlin</li> <li>Palacky University Olomouc (CZ)</li> </ul>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Dr. Dirk Dantz | TechnologieAllianz e.V.
Further information:

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>