Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Application of Nanocarriers for the Treatment of Copper-deficiency Diseases

12.09.2012
</a><strong>Background</strong><br>

For several human diseases that are associated with a disturbed cellular metal-ion homeostasis, nanocarriers offer a possibility to bypass the metal-ion uptake system and thereby to rescue the effects of cellular deficiencies. The disadvantage of conventional carriers with limited matrix compatibility is that they either transport non-polar molecules into an aqueous environment or they transfer polar molecules into a hydrophobic environment (micelle). To overcome these problems of solubility and stability of active agents, nanocompartments are needed, that are compatible with various environ-ments.<br><br> <strong>Technology</strong><br> The invention offers a novel application of nanocarriers in copper-deficiency diseases, such as Alzheimer’s and Parkinson Disease. The nano-transport system can deliver copper and other divalent metal-ions with a high specifici-ty. The nanocarriers are formed by covalent modification of dendritic macro-molecules with a shell, to form stable micelle-type structures.<br><br>

<b>Benefits:</b><ul> <li>Nanocarriers with dendritic core and multishell architecture: suitable for non-covalent encapsulation of various guest molecules, compatible with different environments, targeting the nucleus across cell membranes </li> <li>Transport via passage of the blood-brain barrier in a living individual seems to be possible.</li> <li>Bypassing the cellular metal-ion uptake system to rescue the effects of Copper deficiency in certain diseases, such as Alzheimer‘s and Parkinson Diseases.</li> <li>Also diseases associated with other divalent metal ion deficiencies, e.g. Zinc, could be targeted.</li> </ul> <p><strong>IP Rights</strong><br> European patent granted in 2011<br> validated in: DE, CH, DK, ES, FR; GB, IE, IT LI, NL<br> US patent application filed in 02/2008 <br><br> <strong>Patent Owner</strong><br> Freie Universität Berlin

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2861&lang=en
http://www.technologieallianz.de

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>