Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working memory retains visual details despite distractions

20.01.2006


The ability to retain memory about the details of a natural scene is unaffected by the distraction of another activity and this information is retained in "working memory" according to a study recently published in Journal of Vision, an online, free access publication of the Association for Research in Vision and Ophthalmology (ARVO). These results reinforce the notion that humans maintain useful information about previous fixations in long-term working memory rather than the limited capacity of visual short-term memory (VSTM).



Memory has traditionally been divided into VSTM and long-term memory (LTM). VSTM usually involves the retention of about four objects at a time. This is followed by either information loss or the transfer of this information into LTM. This study provides further evidence that an intermediary "working memory" better describes the nature of information retained while engaged in a particular task.

In the study conducted by Oxford Brookes University Professor David Melcher, participants were asked to view a photograph of a natural scene for 10 seconds. Following the initial viewing, they were asked to silently read a paragraph for 60 seconds, repeating if necessary, or view an image with five colored square for 60 seconds. The participants were then asked questions about the first scene they had viewed. The results show that the addition of the reading task had no measurable influence on the average performance for either color, shape or location questions compared to other trials which involved just a 10-second delay between the viewing and the testing.


According to Melcher, "These results provide further evidence that visual scenes are special and that memory for real scenes involves a system with different properties than that used for words or simple shapes. We are currently examining how this memory system develops in children, how it is affected by aging and how it interacts with attention and disorders of attention."

Elinore Tibbetts | EurekAlert!
Further information:
http://www.arvo.org
http://www.journalofvision.org/6/1/2

More articles from Statistics:

nachricht Institutions of higher education spent more than Euro 48 billion in 2014
19.05.2016 | Statistisches Bundesamt

nachricht Microtechnology industry keen to invest and innovate
07.04.2016 | IVAM Fachverband für Mikrotechnik

All articles from Statistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>