Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger length predicts physically aggressive personalities, study shows

03.03.2005


Dr. Peter Hurd initially thought the idea was "a pile of hooey", but he changed his mind when he saw the data.



Hurd and his graduate student Allison Bailey have shown that a man’s index finger length relative to ring finger length can predict how inclined that man is to be physically aggressive. Women do not show a similar effect.

A psychologist at the University of Alberta, Hurd said that it has been known for more than a century that the length of the index finger relative to the ring finger differs between men and women. More recently, researchers have found a direct correlation between finger lengths and the amount of testosterone that a fetus is exposed to in the womb. The shorter the index finger relative to the ring finger, the higher the amount of prenatal testosterone, and--as Hurd and Bailey have now shown--the more likely he will be physically aggressive throughout his life.


"More than anything, I think the findings reinforce and underline that a large part of our personalities and our traits are determined while we’re still in the womb," said Hurd.

Hurd and Bailey’s research, published this March in Biological Psychology, was determined from surveys and hand measurements of 300 U of A undergraduates.

In their study, they found there were no correlations between finger lengths and people who are prone to exhibit verbally aggressive, angry, or hostile behaviors, but there was to physically aggressive behavior.

Hurd is conducting ongoing research in this area, including a study that involves measuring hockey players’ finger lengths and cross referencing the results with each player’s penalty minutes. He also has a similar study showing that men with more feminine finger ratios are more prone to depression; a paper on this will be published later this year in Personality and Individual Differences.

"Finger lengths explain about five per cent of the variation in these personality measures, so research like this won’t allow you to draw conclusions about specific people. For example, you wouldn’t want to screen people for certain jobs based on their finger lengths," Hurd said. "But finger length can you tell you a little bit about where personality comes from, and that’s what we are continuing to explore."

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Statistics:

nachricht Institutions of higher education spent more than Euro 48 billion in 2014
19.05.2016 | Statistisches Bundesamt

nachricht Microtechnology industry keen to invest and innovate
07.04.2016 | IVAM Fachverband für Mikrotechnik

All articles from Statistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>