Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the digital traces of social networks

16.02.2009
Why do we create and maintain social networks? Most people can immediately think of a few natural reasons -- we get something from the interaction, or the person is nearby and is close to us in proximity, age or gender.

But researching such theories on a large scale has never before been possible -- until digital social networks came along.

Noshir Contractor, the Jane S. and William J. White Professor of Behavioral Sciences at the McCormick School of Engineering and Applied Science at Northwestern University, has studied the massive online virtual world Second Life to test whether these and other social theories are true.

Contractor will discuss his results in a presentation titled "Digital Traces: An Exploratorium for Understanding and Enabling Social Networks," which will be part of the "Interdisciplinary Approaches to the Study of Large-Scale Human Networks" symposium from 1:30 to 4:30 p.m. Friday, Feb. 13, at the American Association for the Advancement of Science (AAAS) Annual Meeting in Chicago. The symposium will be held in Columbus GH, Hyatt Regency Chicago, 151 East Wacker Drive.

Second Life, where more than 15 million accounts are registered, differs from other massive online multiple-player games in that there is no real goal -- people create virtual avatars of themselves and then chat with other people, and buy and sell items.

But in order to make it safe for minors, Second Life created Teen Grid, where only teenage players can socialize. But how successful could such a world be? Linden Lab, the makers of Second Life, contacted Contractor and his collaborators to find out.

"Among other questions, they wanted to learn how networks might help identify potential troublemakers within that context," Contractor says. In return, Contractor and his colleagues got access to huge amounts of data that give them a way to answer how the networks were created.

"We wanted to ask basic questions about communication theory -- to what extent are people joining groups because their friends are part of the group? To what extent are they becoming friends with people in the groups they've joined? We don't have good ways of tracking that in the real world."

So searching through vast amounts of anonymized data, Contractor and his collaborators found that teens had online friendships that were disproportionately with people in their immediate geographic area -- likely with people they already knew.

"That finding really went against a lot of the media hype," Contractor said. "People were worried about helpless teenagers talking with strangers, but that is not what we found. This is the first time this has been based on solid evidence."

Teenagers also tended to be friends with the friends of their friends, not with people who weren't part of their network already, the researchers found.

When teenagers turn 20, they must leave the Teen Grid of Second Life and go on to the regular Second Life, leaving their entire network of friends behind.

"This provides a nice natural experiment to see the transition of being suddenly severed from one network and being introduced to another," Contractor says.

Contractor continues to research virtual worlds like Second Life and hopes to continue testing these social theories.

"What we've found so far is that technology isn't changing our networks -- it's reinforcing them," he says.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>