Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suffering of the poor may have helped societies with class structures spread across globe

29.09.2011
Why do most cultures have a class structure – rich, poor and sometimes middle – instead of being egalitarian, with resources shared equally by everyone?

According to Stanford University researchers, it is the very inequities of the class structure that appear to have been behind the spread of those societies and the displacement of more egalitarian cultures during the early era of human civilization.

The researchers used a computer simulation to compare demographic stability and rates of migration for both egalitarian and unequal societies. They found that class structure provided unequal access to resources, thereby contributing a destabilizing effect on the population, and driving migration and the expansion of stratified societies.

"This is the first study to demonstrate a specific mechanism by which stratified societies may have taken over most of the world," said Marcus Feldman, an evolutionary biologist at Stanford. He is a co-author of a research paper on the topic, published online this week by the Public Library of Science in the journal PLoS ONE.

Feldman and his colleagues determined that when resources were consistently scarce, egalitarian societies – which shared the deprivation equally throughout the population – remained more stable than stratified societies. In stratified societies, the destabilizing effect of unequal sharing of scarce resources gave those societies more incentive to migrate in search of added resources.

In environments where the availability of resources fluctuated from year to year, stratified societies were better able to survive the temporary shortages because the bulk of the deprivation was absorbed by the lower classes, leaving the ruling class – and the overall social structure – intact. That stability enabled them to expand more readily than egalitarian societies, which weren't able to adapt to changing conditions as quickly.

Many possible causes for the development of socioeconomic inequality have been proposed by scientists, such as a need for hierarchical control over crop irrigation systems, or the compounding of small differences in individual wealth over time through inheritance.

"The fact that unequal societies today vastly outnumber egalitarian societies may not be due to the replacement of the ethic of equality by a more selfish ethic, as originally thought by many researchers," said cultural evolution specialist Deborah Rogers, lead author of the study. "Instead, it appears that the stratified societies simply spread and took over, crowding out the egalitarian populations." The study is a product of her PhD thesis project at Stanford. Feldman was Rogers' adviser.

"This is not just an academic exercise," Rogers said. "Inequalities in socioeconomic status are increasing sharply around the world. Understanding the causes and consequences of inequality and how to reduce it is one of the central challenges of our time."

Feldman, a professor of biology, is the director of the Morrison Institute for Population and Resource Studies at Stanford. Rogers is now a researcher at the United Nations University in Bonn, Germany. Omkar Deshpande, a former computer science PhD student at Stanford, also contributed to the research and is a co-author of the PLoS ONE paper.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>