Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suffering of the poor may have helped societies with class structures spread across globe

29.09.2011
Why do most cultures have a class structure – rich, poor and sometimes middle – instead of being egalitarian, with resources shared equally by everyone?

According to Stanford University researchers, it is the very inequities of the class structure that appear to have been behind the spread of those societies and the displacement of more egalitarian cultures during the early era of human civilization.

The researchers used a computer simulation to compare demographic stability and rates of migration for both egalitarian and unequal societies. They found that class structure provided unequal access to resources, thereby contributing a destabilizing effect on the population, and driving migration and the expansion of stratified societies.

"This is the first study to demonstrate a specific mechanism by which stratified societies may have taken over most of the world," said Marcus Feldman, an evolutionary biologist at Stanford. He is a co-author of a research paper on the topic, published online this week by the Public Library of Science in the journal PLoS ONE.

Feldman and his colleagues determined that when resources were consistently scarce, egalitarian societies – which shared the deprivation equally throughout the population – remained more stable than stratified societies. In stratified societies, the destabilizing effect of unequal sharing of scarce resources gave those societies more incentive to migrate in search of added resources.

In environments where the availability of resources fluctuated from year to year, stratified societies were better able to survive the temporary shortages because the bulk of the deprivation was absorbed by the lower classes, leaving the ruling class – and the overall social structure – intact. That stability enabled them to expand more readily than egalitarian societies, which weren't able to adapt to changing conditions as quickly.

Many possible causes for the development of socioeconomic inequality have been proposed by scientists, such as a need for hierarchical control over crop irrigation systems, or the compounding of small differences in individual wealth over time through inheritance.

"The fact that unequal societies today vastly outnumber egalitarian societies may not be due to the replacement of the ethic of equality by a more selfish ethic, as originally thought by many researchers," said cultural evolution specialist Deborah Rogers, lead author of the study. "Instead, it appears that the stratified societies simply spread and took over, crowding out the egalitarian populations." The study is a product of her PhD thesis project at Stanford. Feldman was Rogers' adviser.

"This is not just an academic exercise," Rogers said. "Inequalities in socioeconomic status are increasing sharply around the world. Understanding the causes and consequences of inequality and how to reduce it is one of the central challenges of our time."

Feldman, a professor of biology, is the director of the Morrison Institute for Population and Resource Studies at Stanford. Rogers is now a researcher at the United Nations University in Bonn, Germany. Omkar Deshpande, a former computer science PhD student at Stanford, also contributed to the research and is a co-author of the PLoS ONE paper.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>