Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suffering of the poor may have helped societies with class structures spread across globe

29.09.2011
Why do most cultures have a class structure – rich, poor and sometimes middle – instead of being egalitarian, with resources shared equally by everyone?

According to Stanford University researchers, it is the very inequities of the class structure that appear to have been behind the spread of those societies and the displacement of more egalitarian cultures during the early era of human civilization.

The researchers used a computer simulation to compare demographic stability and rates of migration for both egalitarian and unequal societies. They found that class structure provided unequal access to resources, thereby contributing a destabilizing effect on the population, and driving migration and the expansion of stratified societies.

"This is the first study to demonstrate a specific mechanism by which stratified societies may have taken over most of the world," said Marcus Feldman, an evolutionary biologist at Stanford. He is a co-author of a research paper on the topic, published online this week by the Public Library of Science in the journal PLoS ONE.

Feldman and his colleagues determined that when resources were consistently scarce, egalitarian societies – which shared the deprivation equally throughout the population – remained more stable than stratified societies. In stratified societies, the destabilizing effect of unequal sharing of scarce resources gave those societies more incentive to migrate in search of added resources.

In environments where the availability of resources fluctuated from year to year, stratified societies were better able to survive the temporary shortages because the bulk of the deprivation was absorbed by the lower classes, leaving the ruling class – and the overall social structure – intact. That stability enabled them to expand more readily than egalitarian societies, which weren't able to adapt to changing conditions as quickly.

Many possible causes for the development of socioeconomic inequality have been proposed by scientists, such as a need for hierarchical control over crop irrigation systems, or the compounding of small differences in individual wealth over time through inheritance.

"The fact that unequal societies today vastly outnumber egalitarian societies may not be due to the replacement of the ethic of equality by a more selfish ethic, as originally thought by many researchers," said cultural evolution specialist Deborah Rogers, lead author of the study. "Instead, it appears that the stratified societies simply spread and took over, crowding out the egalitarian populations." The study is a product of her PhD thesis project at Stanford. Feldman was Rogers' adviser.

"This is not just an academic exercise," Rogers said. "Inequalities in socioeconomic status are increasing sharply around the world. Understanding the causes and consequences of inequality and how to reduce it is one of the central challenges of our time."

Feldman, a professor of biology, is the director of the Morrison Institute for Population and Resource Studies at Stanford. Rogers is now a researcher at the United Nations University in Bonn, Germany. Omkar Deshpande, a former computer science PhD student at Stanford, also contributed to the research and is a co-author of the PLoS ONE paper.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Social Sciences:

nachricht Sibling differences: Later-borns choose less prestigious programs at university
14.11.2017 | Max-Planck-Institut für demografische Forschung

nachricht Visual intelligence is not the same as IQ
09.11.2017 | Vanderbilt University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>