Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sociable Trash Box: Proxemics in Dynamic Interactions

26.09.2012
Humans regulate their interactions according to different contexts, the degree of the relationship, cultural factors, gender, age, and so on.

These factors can be utilized as an interpersonal boundary-control mechanism which is totally dependent on encouraging or discouraging another person’s interactions. Humans are expected to dynamically optimize the above mechanism according to the interpersonal distances and personal spaces (proxemics).

Michio Okada and colleagues at Toyohashi University of Technology were interested in determining what kind of distances (spheres), effective social cue, and behaviors that an sociable trash box (STB) requires with children in order to convey its intention to acquire child assistance in collecting trash from the environment as a child-dependent robot.

We conducted the experiment in a Developmental Center for Children at Toyohashi City, and evaluated the validity and effectiveness of the approach through different interactive scenarios. The experiments on naturally interacting with the STBs were conducted with the participation of 108 children aged 4 and 11 years old).

The results of the proxemics showed that when the STBs moved individually in the environment and moved in a swarm (three STBs), the children established different spaces (according to distance and interactive time) to interact with the STB.

These extracted spaces can be utilized in the STB decision process (moving with distances, staying time, etc) to convey its intention to collect trash with assistance from children. This will be the basis of our future plans to extend our study in order to develop a decision hierarchy inside of the STBs

References
Authors: Yuto Yamaji, Taisuke Miyake, Yuta Yoshiike, P. Ravindra De Silva and Michio Okada
Title of original paper: STB: Child-dependent Sociable Trash Box Robot
Journal: International journal of social robotics, 3, 4, Pages 359–370, 2011
Digital Object Identifier (DOI): 10.1007/s12369-011-0114-y
Affiliations: Department of Computer Science and Engineering, Toyohashi University of Technology

| Toyohashi University of Technolo
Further information:
http://www.tut.ac.jp/english
http://www.tut.ac.jp/english/newsletter/research_highlights/research03.html

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>