Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The model epidemic fights against a real one

12.10.2007
There exist quite a lot of mathematical models, which describe the infectious diseases spreading process, but they do not take into account the demographic structure of a megapolis, its inhabitants’ complicated contact system. A new model developed by joint effort of researchers from the N.E. Zhukovsky Central Aerohydrodynamics Institute (TsAGI) and the Institute of Mathematical Modelling, Russian Academy of Sciences, is individual-oriented.

The new model takes everything into account - the quantity of inhabitants in the city, their sex and age, social status and family status, place of employment and relaxation: how spacious the premises are and if all employees have turned up to work today. The model also requires the data about the disease: its duration, clinical course options, if the persons who have been ill with it forms the immunity, if the persons are inoculated against the disease, what the probability of infection is in different situations. For example, at school or in public transport.

In essence, the model reproduces the day by day life of a big city to the minutest detail. How many persons have fallen ill and stayed at home, how many mothers stay with sick children but go shopping during the day and may get infected or can infect others. Out of the persons who came to work some are virus carriers. Some will bring the virus to a small-scale enterprise, but others – to a large-scale entity. The person who avoided infection during the day will go to the cinema in the evening, and there is probability that he/she will come across a virus carrier there. Some quantity of people will consult the doctor, but others – will take a sip of Coldrex – and will return to work thus infecting their colleagues. All these complicated and multiple contacts determine disease spreading and they all are taken into account by the new model.

Based on statistical data on Dresden, presented by Doctor W. Schmidt, head of statistical department of Dresden, and statistical data on Moscow, the researchers have developed a “model epidemic”. Having reviewed it in the minutest detail, they made some conclusions.

The most active part in disease spreading is played by children – schoolchildren and children in kindergartens. At that, the more children are vaccinated, the less citizens will fall ill. An important role is played by the family, which serves as an infectious bridge between various institutions of the city.

Breaking the well-known rule “once fallen ill – stay at home” leads to noticeable increase in the number of sick persons. And the custom to provide additional vacation during the epidemic does not tell on the quality of the diseased individuals, this leads only to increase in epidemic duration. Admittedly, well-chosen time for vacation will allow to assign more evenly the load on polyclinics, avoiding the peaks typical of epidemic.

The persons dealing with epidemiology will say that these are well-known facts confirmed by medical statistics. We can exclaim, “It means that the model works!” Having made sure of its capacity for work, one can model the influence of various antiepidemic measures and choose the most efficient measures.

The only “but” is that the model’s operation needs reliable demographic and statistical data per each city.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>