Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why even close associates sometimes have trouble communicating

26.02.2007
Assumptions can also undermine communication between spouses

Particularly among close associates, sharing even a little new information can slow down communication

Some of people’s biggest problems with communication come in sharing new information with people they know well, newly published research at the University of Chicago shows.

Because they already share quite a bit of common knowledge, people often use short, ambiguous messages in talking with co-workers and spouses, and accordingly unintentionally create misunderstandings, said Boaz Keysar, Professor in Psychology at the University of Chicago.

"People are so used to talking with those with whom they already share a great deal of information, that when they have something really new to share, they often present it in away that assumes the person already knows it," said Keysar, who with graduate student Shali Wu tested Keysar’s communication theories and presented the results in an article, "The Effect of Information Overlap on Communication Effectiveness," published in the current issue of Cognitive Science.

"Sharing additional information reduces communication effectiveness precisely when there is an opportunity to inform—when people communicate information only they themselves know," the researchers said.

In order to test the theory, the two created a communications game in which parties had unequal amounts of information. They prepared line drawings of unusual shapes and gave them made-up names and then trained University of Chicago students to recognize different numbers of the shapes.

During the game students were tested to see how well they could communicate to a partner the identity of one of the shapes. Students, who with their partners shared a great deal of knowledge about the shapes, used names more often in identifying the shapes while students who didn’t have a great knowledge of the shapes described the shapes rather than naming them.

The students were more likely to confuse the partners they shared more information with because they would automatically use the name of a shape rather than the description, assuming that their partner would know what they were talking about, when in reality he or she didn’t recognize the name.

The use of unknown names slowed communication, just as the use of unknown information slows communication in real life. The researchers found that people who shared more information were twice as likely to ask for clarification as those who shared less information.

In real life situations, the assumptions people make about what another person knows has many consequences, Keysar said. Doctors, for instance, often communicate quickly with each other and may miscommunication because they don’t realize the other physician is getting new information when they are discussing a treatment program, he suggested.

On a professional level, brief e-mails between colleagues can cause miscommunication, Keysar has learned from personal experience. "I once was scheduled to speak and had gotten the day of my talk mixed up. I received an e-mail from the host asking me if I was ok. I wrote back and said I was and didn’t find out until later that what he really wanted to know was where I was, as they were waiting for me to talk," Keysar said.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>