Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants can organise visual information at just four months

28.04.2006


Research investigating attention in infancy has revealed that, at just four months old, babies are able to organise visual information in at least three different ways, according to brightness, shape, and how close the visual elements are together (proximity). These new findings mean that very young infants are much more capable of organising their visual world than psychologists had previously thought. The study also has implications for understanding certain developmental disorders such as Williams syndrome.



The findings emerged from Economic and Social Research Council funded research investigating different styles of visual attention in babies from the age of two to eight months. Paying attention to visual stimuli is important in the development of object recognition, and is also needed for the development of memory, motor skills and other key abilities. Led by psychologists Dr Emily Farran at the University of Reading and Dr Janice Brown at London South Bank University, the initial aim of the research was to investigate the underlying reasons why some babies are ‘short-lookers’ and shift visual attention rapidly, while others are ‘long-lookers’ who keep their attention fixed for longer.

Previously, these categories were thought to be relatively stable traits indicative of individual differences, with links to later cognitive development. However, the research revealed that babies often move between these two categories over the timescale studied. “The literature talks about the short-looking and long-looking categories, and links to later abilities are suggested. Unusually, we looked at this longitudinally, so we were able to pick up that these categories weren’t stable” says Dr Farran. “So these differences can’t be indicative of differential brain development, or predictive of later abilities.”


Some of the research was designed to test whether infants are able to organise visual stimuli into groups based on similar attributes: brightness, shape, and proximity. To take part in the visual grouping experiments, each baby was placed in a car seat facing a screen onto which images were projected. Overhead cameras recorded how long each infant looked at images on the screen. The infants were shown an array where the stimuli were arranged by similarity in either horizontal lines or vertical columns. For example, for grouping by shape, an array of horizontal lines (or vertical columns) made up of squares and circles was used, constructed so that shape discrimination would be needed to ‘see’ lines or columns in the array. To test if visual grouping had occurred, images of plain bars of horizontal lines and vertical columns were then shown. If the infants looked for a longer time at either the line or column bars on average, this would indicate an effect of the earlier lines or columns made up of squares and circles, indicating grouping.

The results showed that grouping by brightness emerges first: it was observed at two months, in line with previous observations that this ability is present in newborn babies. At four months, two further grouping abilities emerged: grouping by shape and by proximity. Proximity grouping had not been tested in infants prior to this research, and grouping by shape had previously been seen only at six or seven months.

Dr Farran argues that it’s important to understand the development of low-level processes such as attention from early on in order to understand how higher-level processes such as object recognition – which requires grouping by several different visual characteristics – develop. But the researchers also have a further interest: having established this pattern of development in normal infants, they intend to turn their attention to what happens in infants affected by developmental disorders. The research group already has a new ESRC-funded project under way with Williams syndrome infants – a condition where attention and visual perception are particularly affected.

Visual grouping research, Dr Farran argues, is essential to providing a proper starting point for the new research. “In many atypical disorders, people look at what’s happening in adults and assume that the same patterns of performance would be observed in children”, says Dr Farran. ”But often there are quite different patterns. In cognitive development, small differences can cascade over time, so it’s very important to get a grip on what’s going on at the start and how it develops longitudinally, so we can see how the developmental trajectory grows.”

According to Dr Farran, until recently Williams syndrome children were rarely diagnosed at an early enough stage. Now diagnosis is often earlier, plus there is a genetic test – but interventions are still something for the future. “If we can find out about cognitive development from infancy onwards in today’s Williams syndrome children, the next generation will benefit from this”, she predicts.

Alexandra Saxon | alfa
Further information:
http://www.esrc.ac.uk
http://www.esrcsocietytoday.ac.uk

More articles from Social Sciences:

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

nachricht Polluted air may pollute our morality
08.02.2018 | Association for Psychological Science

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>