Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’To be or, or ... um ... line!’

26.01.2006


Research puts actors’ memory on center stage



"How do you learn all those lines?" It is the question most asked of actors and their art. The ability to remember and effortlessly deliver large quantities of dialogue verbatim amazes non-thespians. Most people imagine that learning a script involves hours, days, and even months of rote memorization. But actors seldom work that way; in fact, they often don’t consciously try to memorize lines at all. And they seldom consider memorization as defining what they do.

What gives actors their seemingly effortless memory capabilities? Could acting teach us something about memory and cognition, and could acting principles help those with memory problems?


These are the questions that cognitive psychologist Helga Noice (Elmhurst College) and her husband, cognitive researcher, actor, and director Tony Noice (Indiana State University) have set out to answer in nearly two decades of psychological studies of actors. The Noices have not only described a learning principle that can be taught to non-actors but they have also tested acting-based interventions to counter cognitive decline in older people. They review their research in the February issue of Current Directions in Psychological Science.

According to the researchers, the secret of actors’ memories is, well, acting. An actor acquires lines readily by focusing not on the words of the script, but on those words’ meaning -- the moment-to-moment motivations of the character saying them -- as well as on the physical and emotional dimensions of their performance.

To get inside the character, an actor will break a script down into a series of logically connected "beats" or intentions. Good actors don’t think about their lines, but feel their character’s intention in reaction to what the other actors do, causing their lines to come spontaneously and naturally. The researchers quote the great British actor Michael Caine: "You must be able to stand there not thinking of that line. You take it off the other actor’s face."

The key, the researchers have found, is a process called active experiencing, which they say uses "all physical, mental, and emotional channels to communicate the meaning of material to another person." It is a principle that can be applied off-stage as well as on. For example, students who studied material by imagining conveying its meaning to somebody else who needed the information showed higher retention than those who tried to memorize the material by rote.

The active-experiencing principle was also found to be effective against cognitive decline in old age. A group of older adults who received a four-week course in acting showed significantly improved word-recall and problem-solving abilities compared to both a group that received a visual-arts course and a control group. The gains persisted four months afterward, as did a significant improvement in the seniors’ perceived quality of life.

Some of the Noices’ findings confirm those of other researchers on memory. Memory is heavily reliant on emotion, action, and perception. In their work with actors, the Noices’ have found, for example, that memory is aided by physical movement. In one study, lines learned while making an appropriate motion -- e.g., walking across a stage -- were more readily remembered by actors later than were lines unaccompanied by action. The physical motion didn’t need to be repeated at the time of recall.

Brian Weaver | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>