Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’To be or, or ... um ... line!’

26.01.2006


Research puts actors’ memory on center stage



"How do you learn all those lines?" It is the question most asked of actors and their art. The ability to remember and effortlessly deliver large quantities of dialogue verbatim amazes non-thespians. Most people imagine that learning a script involves hours, days, and even months of rote memorization. But actors seldom work that way; in fact, they often don’t consciously try to memorize lines at all. And they seldom consider memorization as defining what they do.

What gives actors their seemingly effortless memory capabilities? Could acting teach us something about memory and cognition, and could acting principles help those with memory problems?


These are the questions that cognitive psychologist Helga Noice (Elmhurst College) and her husband, cognitive researcher, actor, and director Tony Noice (Indiana State University) have set out to answer in nearly two decades of psychological studies of actors. The Noices have not only described a learning principle that can be taught to non-actors but they have also tested acting-based interventions to counter cognitive decline in older people. They review their research in the February issue of Current Directions in Psychological Science.

According to the researchers, the secret of actors’ memories is, well, acting. An actor acquires lines readily by focusing not on the words of the script, but on those words’ meaning -- the moment-to-moment motivations of the character saying them -- as well as on the physical and emotional dimensions of their performance.

To get inside the character, an actor will break a script down into a series of logically connected "beats" or intentions. Good actors don’t think about their lines, but feel their character’s intention in reaction to what the other actors do, causing their lines to come spontaneously and naturally. The researchers quote the great British actor Michael Caine: "You must be able to stand there not thinking of that line. You take it off the other actor’s face."

The key, the researchers have found, is a process called active experiencing, which they say uses "all physical, mental, and emotional channels to communicate the meaning of material to another person." It is a principle that can be applied off-stage as well as on. For example, students who studied material by imagining conveying its meaning to somebody else who needed the information showed higher retention than those who tried to memorize the material by rote.

The active-experiencing principle was also found to be effective against cognitive decline in old age. A group of older adults who received a four-week course in acting showed significantly improved word-recall and problem-solving abilities compared to both a group that received a visual-arts course and a control group. The gains persisted four months afterward, as did a significant improvement in the seniors’ perceived quality of life.

Some of the Noices’ findings confirm those of other researchers on memory. Memory is heavily reliant on emotion, action, and perception. In their work with actors, the Noices’ have found, for example, that memory is aided by physical movement. In one study, lines learned while making an appropriate motion -- e.g., walking across a stage -- were more readily remembered by actors later than were lines unaccompanied by action. The physical motion didn’t need to be repeated at the time of recall.

Brian Weaver | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>