Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Helping in a selfish world


Fishing for answers to the co-operation question

Billions of people tuned into recent Live 8 concert broadcasts, some just for the music, others to support the altruistic cause spearheaded by former Boomtown Rat, Sir Bob Geldof. In today’s rat-race climate, what makes some of us look out for each other, while others look out for themselves?

According to evolutionary theory, natural selection has designed individuals to behave selfishishly; selfish individuals are likely to end up with more resources and therefore more offspring. But many species (including humans, some rock musicians, politicians, and everyday citizens among them) do co-operate.

Traditionally, scientists have explained the evolution of co-operation using the idea of kin selection. Help to relatives (who share your genes) makes sense if it means your relative will have more children who will carry your genes into the next generation. Therefore, relatives are expected to help more. However, in a study published today in the Proceedings of the Royal Society, McMaster University researchers show that in certain situations the reverse is true: unrelated individuals help more.

Sigal Balshine, associate professor of in the Department of Psychology, Neuroscience & Behaviour at McMaster and her graduate student Kelly Stiver have been studying a small species of African cichlid fish that live in groups with a dominant breeding pair and non-breeding helpers. All individuals (helpers and breeders) co-operate to defend the young and the territory. The researchers combined behavioural observations with genetic analyses of relatedness in these fish groups and found that under specific ecological and demographic conditions unrelated individuals must "pay-to-stay" in the group and therefore may help more.

"This fish species is particularly interesting because breeders and helpers are not close relatives, but they co-operate nevertheless," says Balshine. "We think that unrelated individuals may be required to "pay more" by doing more work than related individuals in order to be allowed access and enjoy the benefits of being part of a group."

Using a combination of laboratory experiments and underwater field observations in Lake Tanganyika (Zambia), Stiver and Balshine examined how the help provided to breeders varied by how related the helpers were to the breeders. "While some helpers work or care for young because they are related to the dominant breeders, we also observed that other unrelated helpers work as a kind of rent payment," says Stiver.

Like in a commune or a kibbutz where non-relatives work together to achieve a common goal, these helper fish donate their time and energy to the group in exchange for the safety of living within the group. In a sense, these tiny African fish take a larger than usual worldview, and continued studies of co-operation in this species and other animals may shed light on the factors promoting co-operation in our own species.

The paper is available online at

McMaster University, named Canada’s Research University of the Year by Research InfoSource, has world-renowned faculty and state-of-the-art research facilities. McMaster’s culture of innovation fosters a commitment to discovery and learning in teaching, research and scholarship. Based in Hamilton, the University has a student population of more than 23,000 and more than 112,000 alumni in 128 countries.

Julia Thomson | EurekAlert!
Further information:

More articles from Social Sciences:

nachricht New population data provide insight on aging, migration
31.08.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht PRB projects world population rising 33 percent by 2050 to nearly 10 billion
25.08.2016 | Population Reference Bureau

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>