Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Family Portraits Of Russian Regions


Gene pool of the Russian nation may be investigated using people’s surnames instead of genetic markers. This is being performed by Russian researchers supported by the Russian Foundation for the Humanities (RFH) and the Russian Foundation for Basic Research (RFBR).

Researchers use people’s surnames as a special class of genetic markers, with the help of which one can judge of internal diversity of human populations and relative connections between them. In Russia, specialists of the Laboratory of Human Population Genetics (Medicogenetic Research Center, Russian Medical Academy of Sciences) are carrying out this research. Within the last three years, the researchers collected and analyzed enormous quantity of data and for the first time got the opportunity to compare rural population of major groups of the Russian nation across the entire pool of surnames. The researchers came to the conclusion that the Russian surnames suit for analysis not only of individual groups but of the whole nation.

So far, geneticists have analyzed surname distribution across five regions of Russia that were conventionally called Western, Eastern, Northern, Southern and Central regions. These researches by the Moscow scientists were carried out with the help of their colleagues from Belgorod State University, Northern State Medical University (Arkhangelsk), Smolensk Medical Academy and the Kuban State Medical Academy (Maikop). The researchers studied the lists of indigenous countrymen from the age of 18. Among almost a million people representing more than 800 populations, the researchers counted about 50 thousand different surnames. The three fourths of them are rare surnames, i.e., they belong to less than five adult inhabitants of the region. Such surnames were excluded from the analysis and only most frequent ones were investigated.

It has tuned out that “All-Russian” surnames are more typical of the Eastern, Western and Central regions, such as: Smirnov, Levedev, Kuznetsov, Sokolov, Ivanov, Vinogradov, Kozlov, Vasiliev, Petrov, Novikov. The Northern and Southern regions differ significantly from the pool of Russian surnames. Surprisingly, but in both of these ‘peculiar’ regions the first place was occupied by the same surname (Popov). However, it was followed by local surnames. In the Southern region, these surnames are Goncharov, Shevchenko, Kolesnikov, Bondarenko, Tkachenko; in the Northern region – Khromtsov, Bulygin, Potashev, Ryabov, Chernousov and Bobretsov.

It was very important to find common surnames over the entire Russian areal. The researchers determined 257 of such surnames, i.e., every fiftieth surname is found in all the five regions but with different frequency. For example, the family name Smirnov is more frequently found in the Eastern region and less frequently – in the Central region; Ivanov - in the Western and Central regions, Popov and Ponomarev – in the Northern region. The surname Volkov is the leader mainly in the Central, Western and Eastern regions. Only the Southern region plays an insignificant role: only the Kovalevs are numerous there, but less than in the Western region. Contrary to the diffused opinion that the most common Russian surnames are Ivanov-Petrov-Sidorov, it has turned out that out of 25 most frequent common surnames, only 8 surnames are derived from the names of the Orthodox calendar, along with that these 8 surnames are far from being leaders in the list. Only the Ivanovs are among the first top ten frequent surnames.

The Central region is represented by the smallest sampling in the research (only 25 thousand people). Nevertheless, this region indeed takes the central place not only geographically but also in the area of Russian surnames. The list of 50 most common surnames of the Western and Eastern regions and their frequency are quite close to that of the Central region. There are few specific “Central region” surnames (Belousov, Rumiantsev, Blinov, Rybakov, Gorshkov, Skvortsov, Voronin, Zhuravlev, Sobolev, Bobrov). And the Northern region, the peculiarity of which is evident, demonstrates a large number of differences, which are still much fewer that those in the most peculiar region (the Southern region).

Each genetic marker has its own typical areal. It is also applicable to Russian surnames. Thus, the surname Vasiliev, raking the third place among calendar-derived surnames, is spread in the west and north-west of the Russian areal, and it is not represented in the east and south-east of the areal. The Kovalevs (the third place among profession-derived surnames) compactly inhabit the Bryanksk and Smolensk Regions. The researchers assumed that Kovalev and Kuznetsov surnames were not to be found together, but these surnames’ areals overlap. The surname Soloviev, the tenth in the list of the all-Russian names and the fourth in the list of animal-derived surnames is absent in the north and the south-east of the Russian areal, however, it is found along its edge from the south (at the Don river mouth) to the north (Lake Onega). However, the Solovievs are most common in the middle zone of Russia (the Tver and Kostroma Regions).

According to the surname frequency data, geneticists have built a map for 49 regions, which allows to forecast the level of accidental kindred marriages. Evidently the level of such marriages and respectively the burden of hereditary diseases grows steadily from the south-west towards the east.

Sergey Komarov | alfa
Further information:

More articles from Social Sciences:

nachricht New population data provide insight on aging, migration
31.08.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht PRB projects world population rising 33 percent by 2050 to nearly 10 billion
25.08.2016 | Population Reference Bureau

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>