Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family Portraits Of Russian Regions

04.07.2005


Gene pool of the Russian nation may be investigated using people’s surnames instead of genetic markers. This is being performed by Russian researchers supported by the Russian Foundation for the Humanities (RFH) and the Russian Foundation for Basic Research (RFBR).



Researchers use people’s surnames as a special class of genetic markers, with the help of which one can judge of internal diversity of human populations and relative connections between them. In Russia, specialists of the Laboratory of Human Population Genetics (Medicogenetic Research Center, Russian Medical Academy of Sciences) are carrying out this research. Within the last three years, the researchers collected and analyzed enormous quantity of data and for the first time got the opportunity to compare rural population of major groups of the Russian nation across the entire pool of surnames. The researchers came to the conclusion that the Russian surnames suit for analysis not only of individual groups but of the whole nation.

So far, geneticists have analyzed surname distribution across five regions of Russia that were conventionally called Western, Eastern, Northern, Southern and Central regions. These researches by the Moscow scientists were carried out with the help of their colleagues from Belgorod State University, Northern State Medical University (Arkhangelsk), Smolensk Medical Academy and the Kuban State Medical Academy (Maikop). The researchers studied the lists of indigenous countrymen from the age of 18. Among almost a million people representing more than 800 populations, the researchers counted about 50 thousand different surnames. The three fourths of them are rare surnames, i.e., they belong to less than five adult inhabitants of the region. Such surnames were excluded from the analysis and only most frequent ones were investigated.


It has tuned out that “All-Russian” surnames are more typical of the Eastern, Western and Central regions, such as: Smirnov, Levedev, Kuznetsov, Sokolov, Ivanov, Vinogradov, Kozlov, Vasiliev, Petrov, Novikov. The Northern and Southern regions differ significantly from the pool of Russian surnames. Surprisingly, but in both of these ‘peculiar’ regions the first place was occupied by the same surname (Popov). However, it was followed by local surnames. In the Southern region, these surnames are Goncharov, Shevchenko, Kolesnikov, Bondarenko, Tkachenko; in the Northern region – Khromtsov, Bulygin, Potashev, Ryabov, Chernousov and Bobretsov.

It was very important to find common surnames over the entire Russian areal. The researchers determined 257 of such surnames, i.e., every fiftieth surname is found in all the five regions but with different frequency. For example, the family name Smirnov is more frequently found in the Eastern region and less frequently – in the Central region; Ivanov - in the Western and Central regions, Popov and Ponomarev – in the Northern region. The surname Volkov is the leader mainly in the Central, Western and Eastern regions. Only the Southern region plays an insignificant role: only the Kovalevs are numerous there, but less than in the Western region. Contrary to the diffused opinion that the most common Russian surnames are Ivanov-Petrov-Sidorov, it has turned out that out of 25 most frequent common surnames, only 8 surnames are derived from the names of the Orthodox calendar, along with that these 8 surnames are far from being leaders in the list. Only the Ivanovs are among the first top ten frequent surnames.

The Central region is represented by the smallest sampling in the research (only 25 thousand people). Nevertheless, this region indeed takes the central place not only geographically but also in the area of Russian surnames. The list of 50 most common surnames of the Western and Eastern regions and their frequency are quite close to that of the Central region. There are few specific “Central region” surnames (Belousov, Rumiantsev, Blinov, Rybakov, Gorshkov, Skvortsov, Voronin, Zhuravlev, Sobolev, Bobrov). And the Northern region, the peculiarity of which is evident, demonstrates a large number of differences, which are still much fewer that those in the most peculiar region (the Southern region).

Each genetic marker has its own typical areal. It is also applicable to Russian surnames. Thus, the surname Vasiliev, raking the third place among calendar-derived surnames, is spread in the west and north-west of the Russian areal, and it is not represented in the east and south-east of the areal. The Kovalevs (the third place among profession-derived surnames) compactly inhabit the Bryanksk and Smolensk Regions. The researchers assumed that Kovalev and Kuznetsov surnames were not to be found together, but these surnames’ areals overlap. The surname Soloviev, the tenth in the list of the all-Russian names and the fourth in the list of animal-derived surnames is absent in the north and the south-east of the Russian areal, however, it is found along its edge from the south (at the Don river mouth) to the north (Lake Onega). However, the Solovievs are most common in the middle zone of Russia (the Tver and Kostroma Regions).

According to the surname frequency data, geneticists have built a map for 49 regions, which allows to forecast the level of accidental kindred marriages. Evidently the level of such marriages and respectively the burden of hereditary diseases grows steadily from the south-west towards the east.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>