Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family Portraits Of Russian Regions

04.07.2005


Gene pool of the Russian nation may be investigated using people’s surnames instead of genetic markers. This is being performed by Russian researchers supported by the Russian Foundation for the Humanities (RFH) and the Russian Foundation for Basic Research (RFBR).



Researchers use people’s surnames as a special class of genetic markers, with the help of which one can judge of internal diversity of human populations and relative connections between them. In Russia, specialists of the Laboratory of Human Population Genetics (Medicogenetic Research Center, Russian Medical Academy of Sciences) are carrying out this research. Within the last three years, the researchers collected and analyzed enormous quantity of data and for the first time got the opportunity to compare rural population of major groups of the Russian nation across the entire pool of surnames. The researchers came to the conclusion that the Russian surnames suit for analysis not only of individual groups but of the whole nation.

So far, geneticists have analyzed surname distribution across five regions of Russia that were conventionally called Western, Eastern, Northern, Southern and Central regions. These researches by the Moscow scientists were carried out with the help of their colleagues from Belgorod State University, Northern State Medical University (Arkhangelsk), Smolensk Medical Academy and the Kuban State Medical Academy (Maikop). The researchers studied the lists of indigenous countrymen from the age of 18. Among almost a million people representing more than 800 populations, the researchers counted about 50 thousand different surnames. The three fourths of them are rare surnames, i.e., they belong to less than five adult inhabitants of the region. Such surnames were excluded from the analysis and only most frequent ones were investigated.


It has tuned out that “All-Russian” surnames are more typical of the Eastern, Western and Central regions, such as: Smirnov, Levedev, Kuznetsov, Sokolov, Ivanov, Vinogradov, Kozlov, Vasiliev, Petrov, Novikov. The Northern and Southern regions differ significantly from the pool of Russian surnames. Surprisingly, but in both of these ‘peculiar’ regions the first place was occupied by the same surname (Popov). However, it was followed by local surnames. In the Southern region, these surnames are Goncharov, Shevchenko, Kolesnikov, Bondarenko, Tkachenko; in the Northern region – Khromtsov, Bulygin, Potashev, Ryabov, Chernousov and Bobretsov.

It was very important to find common surnames over the entire Russian areal. The researchers determined 257 of such surnames, i.e., every fiftieth surname is found in all the five regions but with different frequency. For example, the family name Smirnov is more frequently found in the Eastern region and less frequently – in the Central region; Ivanov - in the Western and Central regions, Popov and Ponomarev – in the Northern region. The surname Volkov is the leader mainly in the Central, Western and Eastern regions. Only the Southern region plays an insignificant role: only the Kovalevs are numerous there, but less than in the Western region. Contrary to the diffused opinion that the most common Russian surnames are Ivanov-Petrov-Sidorov, it has turned out that out of 25 most frequent common surnames, only 8 surnames are derived from the names of the Orthodox calendar, along with that these 8 surnames are far from being leaders in the list. Only the Ivanovs are among the first top ten frequent surnames.

The Central region is represented by the smallest sampling in the research (only 25 thousand people). Nevertheless, this region indeed takes the central place not only geographically but also in the area of Russian surnames. The list of 50 most common surnames of the Western and Eastern regions and their frequency are quite close to that of the Central region. There are few specific “Central region” surnames (Belousov, Rumiantsev, Blinov, Rybakov, Gorshkov, Skvortsov, Voronin, Zhuravlev, Sobolev, Bobrov). And the Northern region, the peculiarity of which is evident, demonstrates a large number of differences, which are still much fewer that those in the most peculiar region (the Southern region).

Each genetic marker has its own typical areal. It is also applicable to Russian surnames. Thus, the surname Vasiliev, raking the third place among calendar-derived surnames, is spread in the west and north-west of the Russian areal, and it is not represented in the east and south-east of the areal. The Kovalevs (the third place among profession-derived surnames) compactly inhabit the Bryanksk and Smolensk Regions. The researchers assumed that Kovalev and Kuznetsov surnames were not to be found together, but these surnames’ areals overlap. The surname Soloviev, the tenth in the list of the all-Russian names and the fourth in the list of animal-derived surnames is absent in the north and the south-east of the Russian areal, however, it is found along its edge from the south (at the Don river mouth) to the north (Lake Onega). However, the Solovievs are most common in the middle zone of Russia (the Tver and Kostroma Regions).

According to the surname frequency data, geneticists have built a map for 49 regions, which allows to forecast the level of accidental kindred marriages. Evidently the level of such marriages and respectively the burden of hereditary diseases grows steadily from the south-west towards the east.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Social Sciences:

nachricht Geographers provide new insight into commuter megaregions of the US
01.12.2016 | Dartmouth College

nachricht Sustainable Development Goals lead to lower population growth
30.11.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>