Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dream teams thrive on mix of old and new blood

29.04.2005


When the Boston Red Sox won their first World Series title since 1918 last year, the team had some new blood, including key players Curt Schilling, Orlando Cabrera and Doug Mientkiewicz, to mix with the old and help the team achieve the pinnacle of baseball success.



In a paper to be published April 29 in the journal Science, Northwestern University researchers turned to a different type of team -- creative teams in the arts and sciences -- to determine a team’s recipe for success. They discovered that the composition of a great team is the same whether you are working on Broadway or in economics.

The researchers studied data on Broadway musicals since 1877 as well as thousands of journal publications in four fields of science and found that successful teams had a diverse membership -- not of race and gender but of old blood and new. New team members clearly added creative spark and critical links to the experience of the entire industry. Unsuccessful teams were isolated from each other whereas the members of successful teams were interconnected, much like the Kevin Bacon game, across a giant cluster of artists or scientists.


"Do people go out of their way to collaborate with new people?" said Luís A. Nunes Amaral, associate professor of chemical and biological engineering and the corresponding author on the paper. "Do they take this risk?

"We found that teams that achieved success -- by producing musicals on Broadway or publishing academic papers in good journals -- were fundamentally assembled in the same way, by bringing in some experienced people who had not worked together before. The unsuccessful teams repeated the same collaborations over and over again."

Amaral, a physicist with expertise in computer-based modeling, found a new collaborator only 500 yards away across campus: sociologist Brian Uzzi, associate professor of management and organizations at the Kellogg School of Management. Uzzi is one of the paper’s authors, along with Roger Guimerà, a postdoctoral fellow in Amaral’s lab, and Jarrett Spiro, a former undergraduate research assistant of Uzzi’s who is now a Ph.D. student at Stanford University.

Uzzi and Amaral, who share an interest in creativity and network theory, met through their involvement in the University’s new Northwestern Institute on Complex Systems (NICO), which was created expressly to facilitate new collaborations between researchers in diverse scientific areas.

"When Luís discussed his work at a NICO event I knew immediately that we had to work together," said Uzzi, who had been studying creativity and the network of big and successful Broadway musicals. "We discovered that assembling a successful team depends on choosing the right balance of diversity and cohesion -- achieving the bliss point intersection of the two." Diversity represents new collaborations while cohesion comes from repeat collaborations.

Uzzi points to "West Side Story" as an example of a successful collaboration that mixed these two variables well. Producer and director Harold Prince and lyricist Stephen Sondheim had worked together before, on "Pajama Game;" choreographer Jerome Robbins was experienced in the industry but hadn’t worked with Prince or Sondheim before; and classical musical composer Leonard Bernstein was a newcomer to the Broadway scene. Since its stage debut in 1957, the impact of this creative alliance continues to be felt around the world.

Amaral and his co-authors took Uzzi’s Broadway data about team formation and produced an estimate of the structure of the entire systemic network of a field -- the ties among all the artists in the industry. The team then extended the work to scientific teams publishing in the fields of social psychology, economics, ecology and astronomy. Because each journal has an "impact factor" associated with it, the researchers could determine if teams were publishing high or low impact papers.

"The entire network looks different when you compare a successful team with an unsuccessful team," said Amaral. "The teams that publish in bad journals form a network broken into small, unconnected clusters while the teams that publish in good journals give rise to a giant, connected cluster. A strong correlation clearly exists between team assembly and the quality of the team’s creations. You need someone new to get the creative juices going so you don’t get trapped in the same ideas over and over again."

Uzzi added, "If your systemic network has teams with only incumbents, and especially incumbents who have worked together repeatedly, your field tends to have low impact scores. The fact that we found this across fields with equally powerful minds suggests that how the brain power of a field is organized into different kinds of networks determines the field’s success."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Social Sciences:

nachricht Geographers provide new insight into commuter megaregions of the US
01.12.2016 | Dartmouth College

nachricht Sustainable Development Goals lead to lower population growth
30.11.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>