Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dream teams thrive on mix of old and new blood

29.04.2005


When the Boston Red Sox won their first World Series title since 1918 last year, the team had some new blood, including key players Curt Schilling, Orlando Cabrera and Doug Mientkiewicz, to mix with the old and help the team achieve the pinnacle of baseball success.



In a paper to be published April 29 in the journal Science, Northwestern University researchers turned to a different type of team -- creative teams in the arts and sciences -- to determine a team’s recipe for success. They discovered that the composition of a great team is the same whether you are working on Broadway or in economics.

The researchers studied data on Broadway musicals since 1877 as well as thousands of journal publications in four fields of science and found that successful teams had a diverse membership -- not of race and gender but of old blood and new. New team members clearly added creative spark and critical links to the experience of the entire industry. Unsuccessful teams were isolated from each other whereas the members of successful teams were interconnected, much like the Kevin Bacon game, across a giant cluster of artists or scientists.


"Do people go out of their way to collaborate with new people?" said Luís A. Nunes Amaral, associate professor of chemical and biological engineering and the corresponding author on the paper. "Do they take this risk?

"We found that teams that achieved success -- by producing musicals on Broadway or publishing academic papers in good journals -- were fundamentally assembled in the same way, by bringing in some experienced people who had not worked together before. The unsuccessful teams repeated the same collaborations over and over again."

Amaral, a physicist with expertise in computer-based modeling, found a new collaborator only 500 yards away across campus: sociologist Brian Uzzi, associate professor of management and organizations at the Kellogg School of Management. Uzzi is one of the paper’s authors, along with Roger Guimerà, a postdoctoral fellow in Amaral’s lab, and Jarrett Spiro, a former undergraduate research assistant of Uzzi’s who is now a Ph.D. student at Stanford University.

Uzzi and Amaral, who share an interest in creativity and network theory, met through their involvement in the University’s new Northwestern Institute on Complex Systems (NICO), which was created expressly to facilitate new collaborations between researchers in diverse scientific areas.

"When Luís discussed his work at a NICO event I knew immediately that we had to work together," said Uzzi, who had been studying creativity and the network of big and successful Broadway musicals. "We discovered that assembling a successful team depends on choosing the right balance of diversity and cohesion -- achieving the bliss point intersection of the two." Diversity represents new collaborations while cohesion comes from repeat collaborations.

Uzzi points to "West Side Story" as an example of a successful collaboration that mixed these two variables well. Producer and director Harold Prince and lyricist Stephen Sondheim had worked together before, on "Pajama Game;" choreographer Jerome Robbins was experienced in the industry but hadn’t worked with Prince or Sondheim before; and classical musical composer Leonard Bernstein was a newcomer to the Broadway scene. Since its stage debut in 1957, the impact of this creative alliance continues to be felt around the world.

Amaral and his co-authors took Uzzi’s Broadway data about team formation and produced an estimate of the structure of the entire systemic network of a field -- the ties among all the artists in the industry. The team then extended the work to scientific teams publishing in the fields of social psychology, economics, ecology and astronomy. Because each journal has an "impact factor" associated with it, the researchers could determine if teams were publishing high or low impact papers.

"The entire network looks different when you compare a successful team with an unsuccessful team," said Amaral. "The teams that publish in bad journals form a network broken into small, unconnected clusters while the teams that publish in good journals give rise to a giant, connected cluster. A strong correlation clearly exists between team assembly and the quality of the team’s creations. You need someone new to get the creative juices going so you don’t get trapped in the same ideas over and over again."

Uzzi added, "If your systemic network has teams with only incumbents, and especially incumbents who have worked together repeatedly, your field tends to have low impact scores. The fact that we found this across fields with equally powerful minds suggests that how the brain power of a field is organized into different kinds of networks determines the field’s success."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>