Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dream teams thrive on mix of old and new blood

29.04.2005


When the Boston Red Sox won their first World Series title since 1918 last year, the team had some new blood, including key players Curt Schilling, Orlando Cabrera and Doug Mientkiewicz, to mix with the old and help the team achieve the pinnacle of baseball success.



In a paper to be published April 29 in the journal Science, Northwestern University researchers turned to a different type of team -- creative teams in the arts and sciences -- to determine a team’s recipe for success. They discovered that the composition of a great team is the same whether you are working on Broadway or in economics.

The researchers studied data on Broadway musicals since 1877 as well as thousands of journal publications in four fields of science and found that successful teams had a diverse membership -- not of race and gender but of old blood and new. New team members clearly added creative spark and critical links to the experience of the entire industry. Unsuccessful teams were isolated from each other whereas the members of successful teams were interconnected, much like the Kevin Bacon game, across a giant cluster of artists or scientists.


"Do people go out of their way to collaborate with new people?" said Luís A. Nunes Amaral, associate professor of chemical and biological engineering and the corresponding author on the paper. "Do they take this risk?

"We found that teams that achieved success -- by producing musicals on Broadway or publishing academic papers in good journals -- were fundamentally assembled in the same way, by bringing in some experienced people who had not worked together before. The unsuccessful teams repeated the same collaborations over and over again."

Amaral, a physicist with expertise in computer-based modeling, found a new collaborator only 500 yards away across campus: sociologist Brian Uzzi, associate professor of management and organizations at the Kellogg School of Management. Uzzi is one of the paper’s authors, along with Roger Guimerà, a postdoctoral fellow in Amaral’s lab, and Jarrett Spiro, a former undergraduate research assistant of Uzzi’s who is now a Ph.D. student at Stanford University.

Uzzi and Amaral, who share an interest in creativity and network theory, met through their involvement in the University’s new Northwestern Institute on Complex Systems (NICO), which was created expressly to facilitate new collaborations between researchers in diverse scientific areas.

"When Luís discussed his work at a NICO event I knew immediately that we had to work together," said Uzzi, who had been studying creativity and the network of big and successful Broadway musicals. "We discovered that assembling a successful team depends on choosing the right balance of diversity and cohesion -- achieving the bliss point intersection of the two." Diversity represents new collaborations while cohesion comes from repeat collaborations.

Uzzi points to "West Side Story" as an example of a successful collaboration that mixed these two variables well. Producer and director Harold Prince and lyricist Stephen Sondheim had worked together before, on "Pajama Game;" choreographer Jerome Robbins was experienced in the industry but hadn’t worked with Prince or Sondheim before; and classical musical composer Leonard Bernstein was a newcomer to the Broadway scene. Since its stage debut in 1957, the impact of this creative alliance continues to be felt around the world.

Amaral and his co-authors took Uzzi’s Broadway data about team formation and produced an estimate of the structure of the entire systemic network of a field -- the ties among all the artists in the industry. The team then extended the work to scientific teams publishing in the fields of social psychology, economics, ecology and astronomy. Because each journal has an "impact factor" associated with it, the researchers could determine if teams were publishing high or low impact papers.

"The entire network looks different when you compare a successful team with an unsuccessful team," said Amaral. "The teams that publish in bad journals form a network broken into small, unconnected clusters while the teams that publish in good journals give rise to a giant, connected cluster. A strong correlation clearly exists between team assembly and the quality of the team’s creations. You need someone new to get the creative juices going so you don’t get trapped in the same ideas over and over again."

Uzzi added, "If your systemic network has teams with only incumbents, and especially incumbents who have worked together repeatedly, your field tends to have low impact scores. The fact that we found this across fields with equally powerful minds suggests that how the brain power of a field is organized into different kinds of networks determines the field’s success."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>