Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human brain responds to receiving rewards ’the old fashioned way’

13.05.2004


Human beings are more aroused by rewards they actively earn than by rewards they acquire passively, according to brain imaging research by scientists at Emory University School of Medicine. Results of the study, led by first author Caroline F. Zink and principal investigator Gregory S. Berns, MD, PhD, of Emory’s Department of Psychiatry and Behavioral Sciences, are published in the May 13 issue of the journal Neuron.



The Emory scientists used functional magnetic resonance imaging (fMRI) to measure brain activity in the striatum, which is a part of the brain previously associated with reward processing and pleasure. Although other experiments have studied and noted brain activity associated with rewards, until now these studies have not distinguished between the pleasurable effects of receiving a reward and the "saliency" or importance of the reward.

Study volunteers in the Emory experiment were asked to play a simple target-detection computer game. During the game, a money bill appeared occasionally and automatically dropped into a bag of money on the screen. The participant was given the amount of money that dropped in the bag at the end of the game, but because receiving the money had nothing to do with their performance on the computer game, it was not particularly arousing or salient to them. In another version of the game, a money bill occasionally appeared on the screen and the participant had to momentarily interrupt the target detection game and push a button to make the bill drop into the bag. In this case, whether or not the participant received the money did depend on their performance, which made the appearance of the money bill more salient to them. In yet another version, participants played the same computer game except the bag on the screen did not appear to have money in it and a blank "blob" drop! ped into the bag instead of money.


The investigators performed fMRI on the subjects while they were playing the game, particularly focusing on the reward centers. They found that some reward centers of the brain were activated whenever the money was received, but that other parts, particularly the striatum, were activated only when the participants were actively involved in receiving the reward.

"Scientists have conducted tests with monetary rewards in the past and noted that the striatum was activated, but it has been unclear whether it was because of the pleasure surrounding the money or the fact that the money was presented to participants in a salient or behaviorally important manner," said Zink. "We differentiated the saliency aspect by having the participants receive money that had nothing to do with their actions and having them receive money through active participation."

The investigators confirmed that the appearance of money that required a response was more salient to participants than money received passively by measuring skin conductance responses during the game –– a measurement of general arousal used as part of lie detector tests. The active participation in receiving the reward was the only condition that elicited a higher skin conductance measure, indicating greater arousal.

"Being actively engaged in the pursuit of rewards is a highly important function for the brain, much more so than receiving the same rewards passively," Dr. Berns explains. "It is like the difference between winning the lottery and earning the same amount of money. From the brain’s perspective, earning it is more meaningful, and probably more satisfying."

Holly Korschun | EurekAlert!

More articles from Social Sciences:

nachricht Sibling differences: Later-borns choose less prestigious programs at university
14.11.2017 | Max-Planck-Institut für demografische Forschung

nachricht Visual intelligence is not the same as IQ
09.11.2017 | Vanderbilt University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>