Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human brain responds to receiving rewards ’the old fashioned way’

13.05.2004


Human beings are more aroused by rewards they actively earn than by rewards they acquire passively, according to brain imaging research by scientists at Emory University School of Medicine. Results of the study, led by first author Caroline F. Zink and principal investigator Gregory S. Berns, MD, PhD, of Emory’s Department of Psychiatry and Behavioral Sciences, are published in the May 13 issue of the journal Neuron.



The Emory scientists used functional magnetic resonance imaging (fMRI) to measure brain activity in the striatum, which is a part of the brain previously associated with reward processing and pleasure. Although other experiments have studied and noted brain activity associated with rewards, until now these studies have not distinguished between the pleasurable effects of receiving a reward and the "saliency" or importance of the reward.

Study volunteers in the Emory experiment were asked to play a simple target-detection computer game. During the game, a money bill appeared occasionally and automatically dropped into a bag of money on the screen. The participant was given the amount of money that dropped in the bag at the end of the game, but because receiving the money had nothing to do with their performance on the computer game, it was not particularly arousing or salient to them. In another version of the game, a money bill occasionally appeared on the screen and the participant had to momentarily interrupt the target detection game and push a button to make the bill drop into the bag. In this case, whether or not the participant received the money did depend on their performance, which made the appearance of the money bill more salient to them. In yet another version, participants played the same computer game except the bag on the screen did not appear to have money in it and a blank "blob" drop! ped into the bag instead of money.


The investigators performed fMRI on the subjects while they were playing the game, particularly focusing on the reward centers. They found that some reward centers of the brain were activated whenever the money was received, but that other parts, particularly the striatum, were activated only when the participants were actively involved in receiving the reward.

"Scientists have conducted tests with monetary rewards in the past and noted that the striatum was activated, but it has been unclear whether it was because of the pleasure surrounding the money or the fact that the money was presented to participants in a salient or behaviorally important manner," said Zink. "We differentiated the saliency aspect by having the participants receive money that had nothing to do with their actions and having them receive money through active participation."

The investigators confirmed that the appearance of money that required a response was more salient to participants than money received passively by measuring skin conductance responses during the game –– a measurement of general arousal used as part of lie detector tests. The active participation in receiving the reward was the only condition that elicited a higher skin conductance measure, indicating greater arousal.

"Being actively engaged in the pursuit of rewards is a highly important function for the brain, much more so than receiving the same rewards passively," Dr. Berns explains. "It is like the difference between winning the lottery and earning the same amount of money. From the brain’s perspective, earning it is more meaningful, and probably more satisfying."

Holly Korschun | EurekAlert!

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>