Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research explores ’early bird’ and ’night owl’ sleep patterns

19.04.2004


An animal study finds a link in genetics that determines our sleep patterns



Are you annoyed by cheerful "morning people?" Do you ever wonder how "night owls" can keep going? Most of us ask these questions because we are in between these two extremes, and take a while to get going early in the morning and tire long before midnight. This entire spectrum reflects the broad, normal variation in sleep patterns in humans that is rooted in the very genetic foundations of how our body works. Because these variations occur within our population and differ with age, the presumption exists that the differences in sleep patterns are controlled by complex mechanisms with contributions from multiple genes and influenced by environmental factors.

Linking our genetic make-up and sleep related disorders require data that compare genetic differences that might explain the basis of sleep disorders. Knowing what causes these disorders is important -- getting a good night sleep is now a challenge for some 50 to 70 millions American of all ages. A 2002 National Sleep Foundation annual survey reported that nearly 40 percent of adults 30 to 64 years old, and 44 percent of those age 18 to 29, reported that daytime sleepiness is so severe that it interferes with work and social functioning at least a few days each month. Excessive daytime sleepiness has been blamed on interference in cognitive functioning, motor vehicle crashes (especially at night), poor job performance and reduced productivity. While researchers have learned much about the basic mechanism underlying the control of sleep and its importance on our daily function and health, they have only just begun to examine the complex genetic and environmental interactions that shape sleep and health.


A New Study

An important step in this research is a new study that involved three different strains of inbred laboratory rats and measurements of their movement and continuous sleep in controlled environmental chambers for three days and nights. The study examined 24-hour variations in the animals’ slow wave sleep, activity and changes from rest to activity. The comparisons between the three strains have led the researchers to conclude that there were significant variations in these measures, strongly suggesting that the findings were due to genetic differences.

The authors of "Circadian Slow Wave Sleep and Movement Behavior are under Genetic Control in Inbred Strains of Rat," are Thom R. Feroah, Todd Sleeper, Dan Brozoski, Joan Forder, Tom B. Rice, and Hubert V. Forster from the Medical College of Wisconsin, Milwaukee, WI. Dr. Feroah will present his team’s findings at the American Physiological Society’s (APS) (www.the-aps.org) annual scientific conference, Experimental Biology 2004, being held April 17-21, 2004, at the Washington, D.C. Convention Center.

Methodology

Research in inbred strains of mice has previously shown distinct variations in the pattern of slow wave sleep between some strains. This study investigated differences in circadian slow wave sleep and activity patterns in three inbred strains of rats previously used in sequencing the rat genome. If a difference in the pattern of slow wave sleep and activity was found, then a dissection of the multigenic basis of the neurophysiological mechanisms involved in the control of slow wave sleep and behavior could then be explored using consomic (chromosomal substitution) rat panels.

In Brown Norway (BN/mcw), Dahl Salt Sensitive (SS), and Fawn Hooded (FH) inbred rats, movement and slow wave sleep were measured continuously for three days in an environmental controlled chambers in which temperature and humidity were held within a limited operating range. Slow wave sleep was determined from electroencephalograph electrodes attached to the skull and electromyograph electrodes in the neck muscles of the rat. The percent of slow wave sleep (percent of SWS; SWS bout length relative to rest time interval), percent of rest (total rest time relative to interval time) and fragmentation of rest (Frag; calculated as the number of transitions (per hour) from a minimum six second rest period to a minimum four second period of activity) was obtained from a computerized open-field activity monitoring system that was integrated with the sleep system.

Results

Unique and significant differences were found within and between strains over the study period. The researchers found that the percentage of slow wave sleep, rest and transitions between rest and activity varied uniquely between strains. This suggests that these findings are due to genetic differences. Furthermore, the inverse relationship between the percentages of slow wave sleep and rest within strains supports the homeostatic control theory of slow wave sleep, which is to restore glycogen during non-REM sleep.

Conclusions

The next step in this research is to examine the consomic rat panels cross of FH and BN that could aid in locating the chromosome region(s) that are at the very basis of the relationship between the slow wave sleep and activity. Similarly, examining the consomic rat panel cross between the SS and FH inbred strains for the chromosomal region(s) that influence the phase shift in the circadian pattern of slow wave sleep and activity could also help understand the complex basis of the early bird and night owl pattern of sleep that is observed in our society.

This research would be important in establishing the genomic basis of normal and abnormal variation in sleep patterns. Further research into the genetic basis of these differences may very well help dissect the multigenic and physiologic mechanistic pathways involved in circadian sleep and behavior in rats that would be homologous to those in humans.


The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 11,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Editor’s Note: For further information or to schedule an interview with Dr. Feroah, please contact Donna Krupa at 703-967-2751 (cell), 703-527-7357 (office) or at djkrupa1@aol.com. Or contact the APS newsroom at 202-249-4009 between 9:00 AM and 6:00 PM EDT April 17-21, 2004.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>