Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds male and female brains respond differently to visual stimuli

16.03.2004


The emotion control center of the brain, the amygdala, shows significantly higher levels of activation in males viewing sexual visual stimuli than females viewing the same images, according to a Center for Behavioral Neuroscience study led by Emory University psychologists Stephan Hamann and Kim Wallen. The finding, which appears in the April edition of "Nature Neuroscience," demonstrates how men and women process visual sexual stimuli differently, and it may explain gender variations in reproductive behavior.

The study adds to a growing body of research in animals and humans that indicates the amygdala plays a central role in male sexual behavior, Hamann says.

"This study helps us get closer to understanding the fundamental functions of this area of the brain," Hamann says. In addition to adding to basic neuroscience knowledge, the findings potentially could have applications that could help scientists develop therapeutic measures to help people overcome sexual addictions and other dysfunctions, he says.



In the study, 14 male and 14 female participants viewed several types of sexual and social interaction images for 30 minutes. Their brain activity was then compared using functional magnetic resonance imaging (fMRI), a technology that measures neural firing through changes in blood flow.

The fMRI scans revealed significantly higher levels of activation in the amygdala, which controls emotion and motivation, in the brains of the male subjects compared to the females, despite the fact that both males and females expressed similar subjective assessments of their levels of arousal after viewing the images.

Hamann and Wallen had a separate group pre-select the images to ensure they would be equally arousing to both males and females.

"If males and females found the pictures equally arousing, you would assume they would have similar patterns of brain activation," said Hamann. "But we discovered the male brain seems to process visual sexual cues differently."

The scientists’ discovery also is consistent with an evolutionary theory that natural selection spurred the development of different sexual behaviors in males and females.

"There is an advantage for males in quickly recognizing and responding to receptive females through visual cues," explains Hamann. "This allows them to maximize their mating opportunities, which increases their chances for passing on their genes."

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Social Sciences:

nachricht Penn researchers show that mental 'map' and 'compass' are two separate systems
22.05.2015 | University of Pennsylvania

nachricht Real stereotypes continue to exist in virtual worlds
05.05.2015 | Penn State

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>