Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grandma, not mum, knows best

12.03.2004


Research at the University of Sheffield, published today in Nature, has solved the mystery of why women live so long after their reproductive years have ceased. Basically, grandmothers can ensure the success of their own family by helping to increase the reproductive success of their adult children, thus propagating their own genes.

Dr. Virpi Lummaa and her PhD student Mirkka lahdenperä, from the University of Sheffield and Turku in Finland, examined the family histories of women in Finland and Canada during the 18th and 19th centuries to determine why humans, unlike other animals, survive long after they are unable to reproduce. In the animal kingdom it is usual for both males and females to continue their reproductive life until they die.

The team found that the longer a woman lived after the end of her reproductive years, the more successfully her children’s reproductive lives would be. These children tended to begin their families earlier, have a shorter gap between children, have a longer reproductive life and produce offspring that were more likely to survive into adulthood. The effect was equal for both sons and daughters.



The team examined the lives of almost three thousand women and took into account different ages, socio-economic status, and social and cultural differences between Finland and Canada. The link remained throughout.

Dr Lummaa explains, “We consistently found that women gained, on average, two extra grandchildren for every ten years that they lived past their reproductive life. In evolutionary terms this gives a huge benefit as it makes it more likely that women who survive long after stopping reproduction will forward more genes to the next generation. The evidence suggests that the effect is caused by the woman passing her childcare experience on to her offspring. She can also take on some of the responsibilities of childcare, making it more likely that her children will have more children more quickly.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>