Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers-again-pinpoint why stress kills

10.02.2004


As Valentine’s Day approaches, one prevailing argument for marriage may well be that studies show married people are less depressed than their single counterparts. Behind this string of scientific reasoning for matrimony is a proven fact: the prevalence of depression in patients with coronary artery disease (e.g., myocardial infarction and heart failure) is approximately five times that of the general population.

Background

Major depression is a significant predictor of mortality after myocardial infarction. Its predictive ability on subsequent cardiovascular events, for example, myocardial infarction, arrhythmias, ischemia, or sudden cardiac death, is comparable to that of left ventricular dysfunction, previous myocardial infarction, and smoking. Even more alarming is the finding that depression is a significant risk factor for coronary artery disease in patients without a history of heart disease. In other words, the risk for a heart attack or other cardiac disease for depressed but otherwise healthy patients is similar to the risk for patients with established cardiovascular disease.



Gender does play a role. Psychological depression is a common mood disorder affecting 2–3% of males and 5–9% of females. Depression is the leading cause of disability worldwide (quantified by years lived with a disease) and is exceeded only by coronary artery disease as the leading cause of disability in the United States. So, in addition to all the social and medical costs of depression, the disorder is considered a risk factor for coronary artery disease.

Why? Past studies to establish the link between cardiac disease and depression have focused on hypothalamic-pituitary-adrenal axis dysfunction associated with increased sympathetic activation, an imbalance in parasympathetic and sympathetic inputs to the heart (i.e., increased sympathetic tone and/or decreased parasympathetic tone), manifest as reduced heart rate variability, and altered serotonin activity affecting platelet function.

Scientists have noted an important interaction between stress and ventricular arrhythmias, or loss of rhythm to the heart. This relationship has been supported by animal studies and in observation of some human patients with postmyocardial infarction, where the presence of depression in combination with premature ventricular complexes greatly increases the likelihood of a recurrent heart attack.

A New Study

However, none of these suppositions are well established. A team of University of Iowa researchers set out to ascertain whether an increased susceptibility to life-threatening cardiac arrhythmias in depressed patients influences the risk of morbidity and mortality in coronary artery disease. The findings of their research are reported in "Increased Susceptibility to Ventricular Arrhythmias in a Rodent Model of Experimental Depression," authored by Angela J. Grippo, Claudia M. Santos, Ralph F. Johnson, Terry G. Beltz, James B. Martins, Robert B. Felder, and Alan Kim Johnson, all from the University of Iowa, Iowa City, IA. Their findings appeared in the February 2004 edition of the American Journal of Physiology--Heart and Circulatory Physiology. The journal is one of 14 peer-reviewed scientific journals published each month by the American Physiological Society (www.aps.org).

Because stressful life events are known to be predisposing factors for depression as well as predictors of the severity of depression, the researchers used a stress-induced rodent model of depression to examine the influence of this disorder on ventricular arrhythmias. Chronic mild stress (CMS) is a rodent model of depression that was developed to mimic particular defining features of mood disorders, such as anhedonia (the reduced responsiveness to pleasurable stimuli) and reduced activity level. Behavioral changes are induced via a combination of seemingly mild annoyances or stressors (e.g., strobe light, white noise, damp bedding, and paired housing) presented in an unpredictable manner.

Methodology

A control group and a CMS group of rats were established. To generate stress, the CMS group was exposed to the following mild stressors each week, in random order: 1) continuous overnight illumination and 40 degree cage tilt along the vertical axis; 2) paired housing; 3) soiled cage; 4) exposure to an empty water bottle immediately after a period of acute water deprivation; 5) stroboscopic illumination; and 6) white noise. The CMS procedure was carried out for a total of four weeks. Control animals were left undisturbed in their home cages with the exception of routine handling (i.e., regular cage cleaning and measuring of body weight), which was matched to that of the CMS group.

This CMS model provided an opportunity to examine a potential link between experimental anhedonia (absence of pleasure from the performance of acts that would ordinarily be pleasurable) and the susceptibility to ventricular arrhythmias in rats. This entailed the employment of aconitine, in rats exposed to CMS. Aconitine is arrhythmogenic in cardiac myocytes due to enhanced sodium influx into myocardial cells on both depolarization and repolarization and as a result of an increase in active Na+ current during depolarization. The utility of aconitine for the study of electrocardiographic activity is well documented. This drug has been used experimentally in anesthetized rats to investigate the vulnerability to ventricular arrhythmias as well as the efficacy of antiarrhythmic drugs.

Results

The researchers found the following:
  • Sucrose intake was significantly reduced in rats exposed to four weeks of CMS. The reduced sucrose intake and sucrose preference in the CMS group is a specific indication of decreased responsiveness to a pleasurable stimulus.

  • Anhedonic rats displayed elevated heart rate and reduced heart rate variability. These alterations in CMS rats are similar to changes found in human depressed patients as well as results from our laboratory, which describe cardiovascular and behavioral effects associated with CMS in conscious rats.

  • Rats that displayed anhedonia in the current study also showed a reduced threshold for specific ventricular arrhythmias after the fourth week of CMS exposure.

Conclusions

The current study was undertaken to determine whether rats with CMS-induced anhedonia (i.e., experimental depression) were more susceptible than control rats to experimentally induced cardiac arrhythmias. Both behavioral and cardiovascular changes were observed in rats exposed to CMS. This stress appears to produce a reduced threshold for ventricular arrhythmias that may signal an increased risk of detrimental cardiovascular outcomes (e.g., myocardial infarction, heart failure, and sudden cardiac death).

The researchers believe that further research should focus on determining the central nervous system mechanisms that are driving the changes in sympathetic tone and susceptibility to cardiac arrhythmias in the CMS model. The use of controlled experimental methods may shed light on the mechanisms that underlie the increased risk for coronary artery disease in individuals with mood disorders, and may aid in the development of beneficial treatments for these patients.


Source: February 2004 edition of the American Journal of Physiology--Heart and Circulatory Physiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!
Further information:
http://www.aps.org

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>