Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers-again-pinpoint why stress kills


As Valentine’s Day approaches, one prevailing argument for marriage may well be that studies show married people are less depressed than their single counterparts. Behind this string of scientific reasoning for matrimony is a proven fact: the prevalence of depression in patients with coronary artery disease (e.g., myocardial infarction and heart failure) is approximately five times that of the general population.


Major depression is a significant predictor of mortality after myocardial infarction. Its predictive ability on subsequent cardiovascular events, for example, myocardial infarction, arrhythmias, ischemia, or sudden cardiac death, is comparable to that of left ventricular dysfunction, previous myocardial infarction, and smoking. Even more alarming is the finding that depression is a significant risk factor for coronary artery disease in patients without a history of heart disease. In other words, the risk for a heart attack or other cardiac disease for depressed but otherwise healthy patients is similar to the risk for patients with established cardiovascular disease.

Gender does play a role. Psychological depression is a common mood disorder affecting 2–3% of males and 5–9% of females. Depression is the leading cause of disability worldwide (quantified by years lived with a disease) and is exceeded only by coronary artery disease as the leading cause of disability in the United States. So, in addition to all the social and medical costs of depression, the disorder is considered a risk factor for coronary artery disease.

Why? Past studies to establish the link between cardiac disease and depression have focused on hypothalamic-pituitary-adrenal axis dysfunction associated with increased sympathetic activation, an imbalance in parasympathetic and sympathetic inputs to the heart (i.e., increased sympathetic tone and/or decreased parasympathetic tone), manifest as reduced heart rate variability, and altered serotonin activity affecting platelet function.

Scientists have noted an important interaction between stress and ventricular arrhythmias, or loss of rhythm to the heart. This relationship has been supported by animal studies and in observation of some human patients with postmyocardial infarction, where the presence of depression in combination with premature ventricular complexes greatly increases the likelihood of a recurrent heart attack.

A New Study

However, none of these suppositions are well established. A team of University of Iowa researchers set out to ascertain whether an increased susceptibility to life-threatening cardiac arrhythmias in depressed patients influences the risk of morbidity and mortality in coronary artery disease. The findings of their research are reported in "Increased Susceptibility to Ventricular Arrhythmias in a Rodent Model of Experimental Depression," authored by Angela J. Grippo, Claudia M. Santos, Ralph F. Johnson, Terry G. Beltz, James B. Martins, Robert B. Felder, and Alan Kim Johnson, all from the University of Iowa, Iowa City, IA. Their findings appeared in the February 2004 edition of the American Journal of Physiology--Heart and Circulatory Physiology. The journal is one of 14 peer-reviewed scientific journals published each month by the American Physiological Society (

Because stressful life events are known to be predisposing factors for depression as well as predictors of the severity of depression, the researchers used a stress-induced rodent model of depression to examine the influence of this disorder on ventricular arrhythmias. Chronic mild stress (CMS) is a rodent model of depression that was developed to mimic particular defining features of mood disorders, such as anhedonia (the reduced responsiveness to pleasurable stimuli) and reduced activity level. Behavioral changes are induced via a combination of seemingly mild annoyances or stressors (e.g., strobe light, white noise, damp bedding, and paired housing) presented in an unpredictable manner.


A control group and a CMS group of rats were established. To generate stress, the CMS group was exposed to the following mild stressors each week, in random order: 1) continuous overnight illumination and 40 degree cage tilt along the vertical axis; 2) paired housing; 3) soiled cage; 4) exposure to an empty water bottle immediately after a period of acute water deprivation; 5) stroboscopic illumination; and 6) white noise. The CMS procedure was carried out for a total of four weeks. Control animals were left undisturbed in their home cages with the exception of routine handling (i.e., regular cage cleaning and measuring of body weight), which was matched to that of the CMS group.

This CMS model provided an opportunity to examine a potential link between experimental anhedonia (absence of pleasure from the performance of acts that would ordinarily be pleasurable) and the susceptibility to ventricular arrhythmias in rats. This entailed the employment of aconitine, in rats exposed to CMS. Aconitine is arrhythmogenic in cardiac myocytes due to enhanced sodium influx into myocardial cells on both depolarization and repolarization and as a result of an increase in active Na+ current during depolarization. The utility of aconitine for the study of electrocardiographic activity is well documented. This drug has been used experimentally in anesthetized rats to investigate the vulnerability to ventricular arrhythmias as well as the efficacy of antiarrhythmic drugs.


The researchers found the following:
  • Sucrose intake was significantly reduced in rats exposed to four weeks of CMS. The reduced sucrose intake and sucrose preference in the CMS group is a specific indication of decreased responsiveness to a pleasurable stimulus.

  • Anhedonic rats displayed elevated heart rate and reduced heart rate variability. These alterations in CMS rats are similar to changes found in human depressed patients as well as results from our laboratory, which describe cardiovascular and behavioral effects associated with CMS in conscious rats.

  • Rats that displayed anhedonia in the current study also showed a reduced threshold for specific ventricular arrhythmias after the fourth week of CMS exposure.


The current study was undertaken to determine whether rats with CMS-induced anhedonia (i.e., experimental depression) were more susceptible than control rats to experimentally induced cardiac arrhythmias. Both behavioral and cardiovascular changes were observed in rats exposed to CMS. This stress appears to produce a reduced threshold for ventricular arrhythmias that may signal an increased risk of detrimental cardiovascular outcomes (e.g., myocardial infarction, heart failure, and sudden cardiac death).

The researchers believe that further research should focus on determining the central nervous system mechanisms that are driving the changes in sympathetic tone and susceptibility to cardiac arrhythmias in the CMS model. The use of controlled experimental methods may shed light on the mechanisms that underlie the increased risk for coronary artery disease in individuals with mood disorders, and may aid in the development of beneficial treatments for these patients.

Source: February 2004 edition of the American Journal of Physiology--Heart and Circulatory Physiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!
Further information:

More articles from Social Sciences:

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

nachricht Polluted air may pollute our morality
08.02.2018 | Association for Psychological Science

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>