Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little stress may be good for you

11.12.2003


We’ve often heard that red wine and dark chocolate in moderation can be good for you. Now it appears that a little stress may be beneficial, too.

Northwestern University scientists have shown that elevated levels of special protective proteins that respond to stress in a cell (known as molecular chaperones) promote longevity. Acute stress triggers a cascading reaction inside cells that results in the repair or elimination of misfolded proteins, prolonging life by preventing or delaying cell damage.

The findings are published online today (Dec. 10) by Molecular Biology of the Cell, a publication of the American Society for Cell Biology. The article will appear in print in the journal’s February 2004 issue.



"Sustained stress definitely is not good for you, but it appears that an occasional burst of stress or low levels of stress can be very protective," said Richard I. Morimoto, John Evans Professor of Biology, who co-authored the paper with lead author James F. Morley, a graduate student in Morimoto’s lab. "Brief exposure to environmental and physiological stress has long-term benefits to the cell because it unleashes a great number of molecular chaperones that capture all kinds of damaged and misfolded proteins."

Stressors also include elevated temperatures, oxygen stress, bacterial and viral infections, and exposure to toxins such as heavy metals, all of which challenge the environment of the cell. A master protein called heat shock factor senses the stress and responds by turning on the genes that encode molecular chaperones.

Proteins are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this process, the protein is assisted by molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation. Mutations or environmental stress enhances protein damage. If misfolded or damaged proteins accumulate beyond a certain critical point, neurodegenerative diseases such as Huntington’s, Parkinson’s, Alzheimer’s and Lou Gehrig’s diseases can result.

Morimoto and Morley studied C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. In their experiments, the researchers found that when heat shock factor, the master gene that controls the expression of all chaperones, was underexpressed in adult animals, longevity was suppressed. When heat shock factor was overexpressed, lifespan increased. The results suggest that heat shock factor has significant beneficial effects to the organism as a whole.

"The heat shock response is identical in all life on Earth," said Morimoto, who was the first to clone a human heat shock gene in 1985.


###
The research was supported by the National Institute of General Medical Sciences, the National Institute of Neurological Disease and Stroke, Huntington’s Disease Society of America and the Daniel F. and Ada L. Rice Foundation.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>