Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little stress may be good for you

11.12.2003


We’ve often heard that red wine and dark chocolate in moderation can be good for you. Now it appears that a little stress may be beneficial, too.

Northwestern University scientists have shown that elevated levels of special protective proteins that respond to stress in a cell (known as molecular chaperones) promote longevity. Acute stress triggers a cascading reaction inside cells that results in the repair or elimination of misfolded proteins, prolonging life by preventing or delaying cell damage.

The findings are published online today (Dec. 10) by Molecular Biology of the Cell, a publication of the American Society for Cell Biology. The article will appear in print in the journal’s February 2004 issue.



"Sustained stress definitely is not good for you, but it appears that an occasional burst of stress or low levels of stress can be very protective," said Richard I. Morimoto, John Evans Professor of Biology, who co-authored the paper with lead author James F. Morley, a graduate student in Morimoto’s lab. "Brief exposure to environmental and physiological stress has long-term benefits to the cell because it unleashes a great number of molecular chaperones that capture all kinds of damaged and misfolded proteins."

Stressors also include elevated temperatures, oxygen stress, bacterial and viral infections, and exposure to toxins such as heavy metals, all of which challenge the environment of the cell. A master protein called heat shock factor senses the stress and responds by turning on the genes that encode molecular chaperones.

Proteins are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this process, the protein is assisted by molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation. Mutations or environmental stress enhances protein damage. If misfolded or damaged proteins accumulate beyond a certain critical point, neurodegenerative diseases such as Huntington’s, Parkinson’s, Alzheimer’s and Lou Gehrig’s diseases can result.

Morimoto and Morley studied C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. In their experiments, the researchers found that when heat shock factor, the master gene that controls the expression of all chaperones, was underexpressed in adult animals, longevity was suppressed. When heat shock factor was overexpressed, lifespan increased. The results suggest that heat shock factor has significant beneficial effects to the organism as a whole.

"The heat shock response is identical in all life on Earth," said Morimoto, who was the first to clone a human heat shock gene in 1985.


###
The research was supported by the National Institute of General Medical Sciences, the National Institute of Neurological Disease and Stroke, Huntington’s Disease Society of America and the Daniel F. and Ada L. Rice Foundation.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>