Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen promotes gender differences in brain’s response to stress

04.12.2003


Many stress-related mental illnesses, including depression and post-traumatic stress disorder (PTSD), occur at least twice as often in women as in men. While social and cultural factors certainly may contribute to this statistic, potential neurobiological reasons for this discrepancy have been inadequately investigated. Depression and PTSD are characterized by dysfunction of an area of the brain called the prefrontal cortex (PFC), which is known to govern higher cognitive abilities like concentration and short-term memory. These functions have been shown in lab animals to be disrupted after exposure to stress. However, the experiments have largely been done only in male animals, and sex differences in how the PFC responds to stress are unknown. A better understanding of such processes may help to elucidate the reason that women are more susceptible to stress-related disorders, and lead to the development of better anti-depressant treatments.

To examine the effects of stress on PFC function, male and female rats were exposed to different levels of mild stress, and then tested on a short-term memory task. The authors found that without stress, males and females performed equally well on the task. Likewise, after exposure to higher levels of stress, both males and females made significant memory errors. However, after exposure to a moderate level of stress, females were impaired, but males were not, suggesting that females were more sensitive to the PFC-impairing effects of stress. When the authors monitored the female rats’ estrus cycles, they found that the rats showed this sensitivity only when they were in a high-estrogen phase. To further investigate the role of estrogen in this effect, Shansky et al removed the ovaries of a new group of female rats, thus eliminating any circulating estrogen. A time-release capsule containing either estrogen or placebo was implanted and the experiment repeated. Estrogen replacement had the same effect as naturally circulating estrogen--animals with estrogen capsules displayed the same sensitivity to stress that females in the high-estrogen estrus phase did, while animals with placebo capsules were unaffected.

Together, these results suggest that high levels of estrogen can act to enhance the stress response, causing greater stress-related cognitive impairments. It is important to note, however, that estrogen had no effect on cognitive performance under non-stressful conditions. The idea that estrogen could contribute to the higher prevalence of stress-related disorders in women is consistent with reports that the discrepancy first arises at puberty, maintains through the child-bearing years, and then declines, such that it is equally likely to occur in post-menopausal women as in men of the same age. The mechanisms by which estrogen may be producing these effects are to date unknown, but currently under investigation. It is known that estrogen can interact with molecular processes involved in the stress response, and that certain genetic variations have been demonstrated in clinically depressed women. However, how these factors might combine to produce the glaring disparity in the prevalence of this disorder awaits discovery. Such knowledge will hopefully lead to the development of new, more effective treatments for depression.




Citation source: Molecular Psychiatry advance online publication, December 2003 (doi:10.1038/sj.mp.4001435)

ARTICLE: "Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction"

AUTHORS: Rebecca M Shansky, Courtney Glavis-Bloom, David Lerman, Paulette McRae, Christopher Benson, Katherine Miller, Louise Cosand, Tamas L Horvath and Amy FT Arnsten

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>